跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈育安
研究生(外文):Shen, Yu-An
論文名稱:利用滑動電弧的電漿輔助觸媒進行自熱反應重組乙醇的研究:不同觸媒的比較
論文名稱(外文):Plasma Assisted Catalytic System for Ethanol Steam Reforming- Comparison of Different Catalysts
指導教授:吳宗信吳宗信引用關係
指導教授(外文):Wu, Jong-Shinn
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:101
中文關鍵詞:滑動電弧電漿輔助觸媒不同觸媒的比較
外文關鍵詞:PlasmaPlasma Assisted Catalytic SystemDifferent Catalysts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本實驗探討利用滑動電弧的電漿輔助觸媒經過自熱反應的方式重組乙醇存並進行產生氫氣之研究。而滑動電弧的電漿可以由一個能夠產生20kHz的電源供應器來提供所需的功率。其中,在電漿輔助觸媒生產氫氣的過程搭配兩種不同種類的觸媒,分別是貴重金Rh的觸媒和非貴重金屬Ni0.35Mg2.65FeO4.5的觸媒,藉由這兩者去比較滑動電弧搭配觸媒各有怎樣的效果。首先在探討貴重金屬中,藉由成分為5 wt% Rh/CeO2/Al2O3的觸媒,並在空氣流量 0.5-2.0 SLM中,使乙醇水氣重組。在觸媒重組的實驗結果中,當氣體流量為1.0 SLM時,氣體轉換率達到100%,氫氣選擇比也達到最高的115%,但流量為較低的0.5slm和較高的1.5slm時,氫氣選擇比分別為95%和70%的選擇比。加入電漿輔助觸媒後,可以明顯地看到在1.0 SLM 及1.5 SLM時,氫氣選擇比分別為113%和111%。由此結果可以看出,PAC的系統在較高流量時,仍然可以藉由目前設備達到較好的氫氣選擇比。然而當流量在達到更高的2.0 SLM時,氫氣的選擇比急速的下降至70%上下並且和觸媒的氫氣選擇比幾乎一樣,可能的原因是,電漿處理氣體的停留時間下降,使得大部分的氣體僅藉由觸媒反應產生重組。
而在非貴重金屬的探討中,使用成分為10 wt% Ni0.35Mg2.65FeO4.5/Al2O3的觸媒使酒精重組並產生氫氣。而結果顯示出,當空氣流量在1 SLM,觸媒溫度為400 ℃時,觸媒可產生出最高的氫氣選擇比大約55%,還有的乙醇轉換效率接近100%,並且隨著溫度下降而下降。在經過電漿輔助後,氫氣選擇比可以來到約75%。但即使氫氣選擇比有提升,但是乙醇的轉換效率卻大幅下降至73 %並且氫氣選擇比仍然遠低於搭配貴重金屬的選擇比。而最有可能的原因是,Ni0.35Mg2.65FeO4.5本生身「水氣轉換氫氣」的這項反應式是幾乎不會發生的,對於氫氣的選擇比以及乙醇轉換效率會大幅下降有很好的解釋。而上述所解釋的現象和氣體成分詳細的分析皆可透過經由氣體層析儀得知。

In this study, the preheated ethanol steam flow is reformed using a gliding-arc plasma-assisted catalyst (PAC) system with a power frequency of 20 kHz. Among the PAC reforming, the noble catalyst Rh and non-noble catalyst Ni0.35Mg2.65FeO4.5 respectively is used to compare PAC with catalyst alone reforming by generating the hydrogen selectivity and conversion rate via different experimental parameters. In Rh catalyst alone reforming at the range of air flow rates of 0.5-2.0 SLM, the results show that a 100% conversion rate and a maximum of 115% hydrogen selectivity could be obtained at a C/O ratio of 0.7 with an air flow rate of 1.0 SLM. However, hydrogen selectivity decreases rapidly to 95% and 70% at lower (0.5 SLM) and higher (1.5 SLM) air flow rates, respectively. With the addition of a gliding arc prior to the catalyst, hydrogen selectivity reaches 113% and 111% at air flow rates of 1.0 and 1.5 SLM, respectively, with a plasma absorption power of approximately 200 W. This shows that very high hydrogen selectivity (>110%) can be obtained at air flow rates of both 1.0 and 1.5 SLM under the current experimental setup. However, at a 2.0 SLM air flow rate, the hydrogen selectivity of PAC drops down to 70% and is almost the same as that for reforming with the catalyst alone. The above observations correlate strongly with the residence time of the gas flow in plasma with the catalyst. In the Ni0.35Mg2.65FeO4.5 catalyst reforming at the range of catalyst temperatures of 200-400℃, the highest hydrogen selectivity (~55%) and conversion rate are close the 100% at temperature 400 ℃ and drop down rapidly with decreasing the temperature. However, the PAC with Ni0.35Mg2.65FeO4.5 catalyst can improve the selectivity of catalyst alone reforming to 75% at the temperature 400℃. Even though the selectivity could be raised, the conversion drop down to 73% and hydrogen selectivity is much lower than PAC with Rh catalyst. The reason maybe the plasma generates a lot of H2O but the catalyst is inefficient at water-gas-shift (WGS) chemical reaction equation, as estimated using measurements of the gas composition from gas chromatography.
摘要 I
Abstract III
誌 謝 V
Table of Contents VI
List of Tables VIII
List of Figure IX
Nomenclature XII
Chapter 1 Introduction 1
1.1 BACKGROUND AND MOTIVATION 1
1.1.1 Hydrogen Energy Production 1
1.1.2 Overview of Reforming Technologies 3
1.1.3 Plasma Reforming Technologies 6
1.1.5 Hydrocarbon Reforming Fuel 8
1.1.6 Literature Survey 9
1.2 SPECIFIC OBJECTIVES OF THIS THESIS 11
Chapter 2 Theoretical Method 13
2.1 THEORETICAL ANALYSIS 13
2.1.1 The Physical Phenomenon of Gliding-Arc 13
2.1.2 Chemical Reaction Paths of Ethanol Reforming 14
2.1.3 Definition of Several Performance Parameters 15
Chapter 3 Experimental Methods 17
3.1 OVERVIEW OF EXPERIMENTAL SETUP 17
3.2 EXPERIMENTAL FACILITIES 18
3.2.1 Plasma Reactor 18
3.2.2 AC Power Supply and Pulse Generator 18
3.2.3 Fuel Feeding and Heating System 19
3.2.4 Catalyst Preparation 20
3.2.4.1 Rh/CeO2/Al2O3 20
3.2.4.2 Ni0.35Mg2.65FeO4.5/Al2O3 21
3.3 EXPERIMENTAL INSTRUMENTATION 21
3.4 EXPERIMENTAL PROCEDURES 22
3.4.1 Catalytic Reforming 22
3.4.2 Plasma Reforming 22
3.4.3 Plasma Assisted Catalytic Reforming 22
3.5 TEST CONDITIONS 23
Chapter 4 Characterization of Gliding Arc Plasma 24
4.1VISUALIZATION 24
4.2 ELECREICAL PROPERTIES 24
Chapter 5 Results and Discussion 25
5.1 REFORMING WITH GLIDING ARC PLASMA 25
5.1.1 Effect of C/O ratio 25
5.1.2 Effect of Gas Flow Rate 25
5.2 CATALYST REFORMING 26
5.2.1 Rh 27
5.2.2 Ni0.35Mg2.65FeO4.5/Al2O3 28
5.3 PLASMA ASSISTED CATALYST (PAC) REFORMING 28
5.3.1 PAC reforming with Rh catalyst 29
5.3.2 PAC reforming with Ni0.35Mg2.65FeO4.5 Catalyst 30
Chapter 6 Conclusion and Future Work 31
6.1 CONCLUSION 31
6.2 RECOMMENDATIONS FOR FUTURE WORK 33
References 34
Appendix A. Discussion of Gliding Arc in Tornado (GAT) 42
Appendix B. Discussion of Magnetic Gliding Arc Discharge (MGAD) 44
Appendix C. Hydrogen Reduction Furnace 45
1. Akansu1 S.O., Dulger Z., Kahraman N., Nejat Veziroglu T. “Internal combustion engines fueled by natural gas—hydrogen mixtures”, International Journal of Hydrogen Energy, 29, pp. 1527-1539, 2004.
2. Barbara Pietruszka, Moritz Heintze, “Methane conversion at low temperature: the combined application of catalysis and non-equilibrium plasma,” Catalysis Today, 90, pp. 151-158, 2004
3. Batista, M.S., Santos, R.K.S., Assaf, E.M., Assaf, J.M., and Ticianelli, E.A., ‘‘High efficiency steam reforming of ethanol by cobalt-based catalysts’’, Journal of Power Sources, 134, pp. 27-32, 2004.
4. Bo Z., Yan J.H., Li X.D., Chi Y., and Cen K.F. ‘‘ Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition’’, Journal of Hazardous Material, 155, pp. 494-501, 2004.
5. Bo Z., Yan J.H., Li X.D., Chi Y., Cheron B., Cen K.F. ‘‘The dependence of gliding are gas discharge characteristics on reactor geometrical configuration’’, Plasma Chemistry and Plasma Processing, 27, pp. 691-700, 2007.
6. Bo, Z., Yan J., Li X.D., Chi Y., Cen K. ‘‘Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion’’, International Journal of Hydrogen Energy, 33, pp. 5545-5553, 2008.
7. Bromberg L., Cohn D.R., Rabinovich A., Alexeev N., Samokhin A., Hadidi K., Palaia J., N. Margarit-Bel, ‘‘Onboard Plasmatron Hydrogen Production for Improved Vehicles’’, PSFC JA-06-3, 2006.
8. Cavallaro S., Chiodo V., Freni S., Mondello N., Frusteri F. ‘‘Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC’’, Applied Catalysis A: General, 249, pp. 119-128, 2003.
9. Chao Y., Huang C. T., Chang M. B., Lee H. M. “Hydrogen production via partial oxidation of methane with plasma-assisted catalysis,” International Journal of Hydrogen Energy, 33, pp 664-671, 2008.
10. Chao Y., Huang C.T., Lee H.M., and Chang M.B. ‘‘ Hydrogen production via partial oxidation of methane with plasma-assisted catalysis’’, International Journal of Hydrogen Energy,33, pp. 644-671, 2008.
11. Chen H.L., Lee H.M., Chen S.H., Chao Y., Chang M.B. ‘‘ Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects’’, Applied Catalysis B-Environmental, 85, pp. 1-9, 2008.
12. Chernyak V.Y., Olszewski S.V., Yukhymenko V.V., Solomenko E.V., Prysiazhnevych I.V., Naumov V.V., Levko D.S., Shchedrin A.I., Ryabtsev A.V., Demchina V.P., Kudryavtsev V.S., Martysh E.V., Verovchuck M.A. “Plasma-Assisted Reforming of Ethanol in Dynamic Plasma-Liquid System: Experiments and Modeling”, IEEE Transaction On Plasma Science, pp. 36(6), 2933 – 2939, 2008.
13. Cohn D.R., Rabinovich A., Titus C.H., and Bromberg, L. International Journal of Hydrogen Energy, Elsevier, 22, pp. 715–723, 1997.
14. Comas J., Mariño F., Laborde M., Amadeo N. ‘‘Bio-ethanol steam reforming on Ni/Al2O3 catalyst’’, Chemical Engineering Journal, 98, pp. 61-68, 2004.
15. De Souza S., Visco S.J., Jongle L.C.D. “Thin-film solid oxide fuel cell with high performance at low-temperature”, Solid State Ionics, 98, pp. 57-61, 1997.
16. Diagne C., Idriss H., and Kiennemann A. ‘‘Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts”, Catalysis Communications’, 3, 565-571, 2002.
17. Dupuis A.C. “Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques”, Progress in Materials Science, 56, pp. 289-327, 2011.
18. Erdohelyi A., Raskó J., Kecskés T., Tóth M., Dömök M., and Baán K. ‘‘Hydrogen formation in ethanol reforming o n supported noble metal catalysts’’, Catalysis Today, 116, 367-376, 2006.
19. Fatsikostas, A.N., Verykios X.E. ‘‘Reaction network of steam reforming of ethanol over Ni-based catalysts’’, Journal of Catalysis, 225, pp. 439-452, 2004.
20. Fields, S., ‘‘Hydrogen for Fuel Cells: Making the Best of Biomass’’, Environmental Health Perspectives, 111, pp. A38-A41, 2003.
21. Frusteri F., Freni S., Chiodo V., Spadaro L., Di Blasi O., Bonura G., Cavallaro, S. ‘‘Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell’’, Applied Catalysis A: General, 270, pp. 1-7, 2004.
22. Frusteri F., Freni S., Spadaro L., Chiodo V., Bonura G., Donato S., Cavallaro, S. ‘‘H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts”, Catalysis Communications, 5, pp. 611-615, 2004.
23. G. A. Deluga, J. R. Salge, L. D. Schmidt, X. E. Verykios, 2004, “Renewable Hydrogen from Ethanol by Autothermal Reforming,” Science, 303, pp. 993-996.
24. G. Petitpas, J.D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, and L.Fulcheri, ‘‘A comparative study of non-thermal plasma assisted reforming technologies’’, International Journal of Hydrogen Energy, 32, pp.2848-2867, 2007.
25. Heffel J.W. “NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation”, International Journal of Hydrogen Energy, 28, pp. 901-908, 2003.
26. Indarto A., Choi J. W., Lee H., Song H. K., Coowanitwong N. “Discharge characteristics of a gliding-arc plasma in chlorinated methanes diluted in atmospheric air” Plasma Device and Operations, 14, 15-26, 2006.
27. Kalra C. S., Kossitsyn M., Iskenderova K., Chirokov A., Cho Y. I., Gutsol, A., and Fridman, A., Electronic Proceedings of the 16th International Symposium on Plasma Chemistry, Taormina, Italy, pp.22–27, 2003.
28. Kalra C.S., Cho Y.I., Gutsol A., Fridman A., and Rufael, T.S., ‘‘Gliding arc in tornado using a reverse vortex flow’’, Review of Scientfic Instruments, 99, 76, 2005.
29. Kalra C.S., Cho Y.I., Gutsol A., Fridman A., and Rufael, T.S., ‘‘Non-Thermal Plasma Catalytic Conversion of Methane to Syn-Gas’’, Abstracts of Papers of the American Chemical Society,228, pp. 687, 2004.
30. Kalra C.S., Gutsol A.F., and Fridman A.A., ‘‘Gliding arc discharges as a source of intermediate plasma for methane partial oxidation’’, IEEE, Transactions ofn Plasma Science, 33, pp. 32-4, 2005.
31. Kim J, Lee S.M., Srinivasan S. “Modeling of Protop Exchange Membrane Fuel Cell Performance with an Empirical Eq”, Journal of The Electrochem Society, 142, pp. 2670-2674, 1995.
32. Kusano Y., Teodoru S., Leipold F., Andersen T.L., Sorensen B.F. Rozlosnik N., Michelsen P.K. ‘‘Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites’’, Surface & Coatings technology, 202, pp. 5579-5582, 2008.
33. Kuznetsova I.V., Kalashnikov N.Y., Gutsol A.F., Fridman A.A., and Kennedy L.A. ‘‘Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge’’, Journal of Applied Physics, 92, pp. 4231-4237, 2002.
34. Li M., Wang X., Li S., Wang S., Ma X. “Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds”, International Journal of Hydrogen Energy, 35, pp. 6699-6708, 2010
35. Liguras D.K., Kondarides D.I., Verykios X.E. ‘‘Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts’’, Applied Catalysis B: Environmental, 43, pp. 345-354, 2003.
36. Llorca J., Homs N., Sales J., Fierro J.L.G., Piscina P.R. ‘‘Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol’’, Journal of Catalysis, 222, pp. 470-480, 2004.
37. Llorca J., Piscina P.R., Dalmon J.A., Sales J., Homs N. ‘‘CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor’’, Applied Catalysis B: Environmental, 43, pp. 355-369, 2003.
38. Mehta V., Cooper J.S.. “Review and analysis of PEM fuel cell design and manufacturing”, Journal of Power Sources,114, pp. 32-53, 2003.
39. Mutaf-Yardimci O., Saveliev A.V., Fridman A.A. and Kennedy L.A. ‘‘Thermal and non-thermal regimes of gliding arc discharge in air flow’’, Journal of Applied Physics, 87, pp. 1632-1641, 2000.
40. P. J. de Wild, Verhaak M. J. F. M. “Catalytic production of hydrogen from methanol,” Catalysis Today, 60, pp. 3-10, 2000.
41. Park Seungdoo, Vohs J.M., Gorte R.J. “Direct oxidation of hydrocarbons in a solid-oxide fuel cell”, Nature, 404, pp. 265-267, 2000.
42. Rueangjitt N., Sreethawong T., Chavadej S., Sekiguchi H. “Non-Oxidative Reforming of Methane in a Mini-Gliding Arc Discharge Reactor: Effects of Feed Methane Concentration, Feed Flow Rate, Electrode Gap Distance, Residence Time, and Catalyst Distance” Applied Catalysis B: Environmental, 85, pp. 1-9, 2011.
43. Shiki H., Motoki J., Ito Y., Takikawa H., Ootsuka T., Okawa T., Yamanaka S., Usuki E., Nishimura Y., Hishida S. Sakakibara T. ‘‘Development of split gliding arc for surface treatment of conductive material’’, Thin Solid Films, 516, pp. 3684-3689, 2008.
44. Sun, J., Qiu, X.P., Wu, F., and Zhu, W.T. ‘‘H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application’’, Interantional Journal of Hydrogen Energy, 30, pp. 437-445, 2005.
45. Vizcaino, A.J., Carrero, A., and Calles, J.A. ‘‘Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts’’ International Journal of Hydrogen Energy, 32, pp. 1450-1461, 2007.
46. Wang J.H., Lee C.S. Lin M.C. ‘‘Mechanism of Ethanol Reforming: Theoretical Foundations’’, Journal of Physical Chemistry, 113, pp. 6681-6688, 2009.
47. Wang Q., Yan B.H., Jin Y., Cheng Y. “Investigation of Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor”, Plasma Chemical Plasma Process, 29, pp. 217-228, 2009.
48. White C.M., Steeper R.R., Lutz A.E. “The hydrogen-fueled internal combustion engine a technical review”, Intional Journal of Hydrogen Energy, 31, pp. 1292-1305, 2006.
49. Yang Y., Ma J. Wu, F. ‘‘Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst’’, International Journal of Hydrogen Energy, 31, 877-882, 2006.
50. Yang Y.C., Lee B.J., Chun Y.N. ‘‘Characteristics of methane reforming using gliding arc reactor’’, Energy, 34, pp. 172-177, 2009.
51. Zhao F., Virkar A.V. “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, Journal of Power Sources, 141, pp. 79-95, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top