|
[1] W. R. Deal, M. Biedenbender, P. Liu, J. Uyeda, and M. Siddiqui et al., “Design and analysis of broadband dual-gate balanced low-noise amplifiers,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2107-2115, Oct. 2007. [2] M. A. Masud, H. Zirath, and M. Kelly, “A 45-dB variable-gain low-noise MMIC amplifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2848-2855, June 2006. [3] J. Wang, X. Zhu, and D. Pavlidis, “Low-power InP/GaAsSb/InP DHBT cascade transimpedance amplifier with GBP/Pdc of 7.2 GHz/mW,” Electron. Lett., vol. 42, no. 1, pp. 25-27, Jan. 2006. [4] E. Kerherve, C. P. Moreira, P. Jarry, and L. Courcelle, “40-Gb/s wide-band MMIC pHEMT modulator driver amplifiers designed with the real frequency technique,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2145-2152, June 2005. [5] S. Masuda, T. Takahashi, and K. Joshin, “An over-110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission system,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1479-1484, Sept. 2003. [6] B. A. Floyd, “V-band and W-band SiGe bipolar low-noise amplifiers and voltage-controlled oscillators,” in IEEE RFIC Symp. Dig., June 2004, pp. 295-298. [7] N. Tanzi, J. Dykstra, and K. Hutchinson, “A 1-watt doubly balanced 5GHz flip-chip SiGe power amplifier,” in IEEE RFIC Symp. Dig., June 2003, pp. 141-144. [8] A. Schild, H.-M. Rein, J. Mullrich, L. Altenhain, and J. Blank et al., “High-gain SiGe transimpedance amplifier arry for a 12 × 10 Gb/s parallel optical-fiber link,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 4-12, Jan. 2003. [9] S. Mandegaran and A. Hajimiri, “A breakdown voltage multiplier for high voltage swing drivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 302-312, Feb. 2007. [10] Q. He and M. Feng, “Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 956-959, June 2004. [11] E. Morifuji, and H. S. Momose, T. Ohguro, T. Yoshitomi, and H. Kimijima et al., “Future perspective and scaling down roadmap for RF CMOS,” in IEEE VLSI Circuits Symp. Dig. Tech. Papers, June 1999, pp. 165-166. [12] W. Wu, S. Lam, and M. Chan, “Effects of layout methods of RF CMOS on noise performance,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2753-2759, Dec. 2005. [13] N. Zhang, C.-M. Hung, and K. K. O, “80-GHz tuned amplifier in bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 121-123, Feb. 2008. [14] B. A. Floyd, L. Shi, Y. Taur, I. Lagnado, and K. K. O, “A 23.8-GHz SOI CMOS tuned amplifier,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2193-2196, Sept. 2002. [15] Y.-C. Ho, K.-H. Kim, B. A. Floyd, C. Wann, and Y. Taur et al., “4- and 13-GHz tuned amplifiers implemented in a 0.1-μm CMOS technology on SOI, SOS, and bulk substrates,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2066-2073, Dec. 1998. [16] D. J. Cassan and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LNA in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 427-435, Mar. 2003. [17] J.-D. Jin and S. S. H. Hsu, “A 0.18-μm CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 440-445, Feb. 2008. [18] J.-D. Jin and S. S. H. Hsu, “A 1-V, 45-GHz balanced amplifier with 21.5-dB gain using 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 599-603, Mar. 2008. [19] S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2138-2146, Dec. 2003. [20] J. A. Mataya, G. W. Haines, and S. B. Marshall, “IF amplifier using Cc compensated transistors,” IEEE J. Solid-State Circuits, vol. SC-3, no. 4, pp. 401-407, Dec. 1968. [21] A. Arbabian and A. M. Niknejad, “A broadband distributed amplifier with internal feedback providing 660GHz GBW in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2008, pp. 196-197. [22] J.-C. Chien and L.-H. Lu, “40Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18μm CMOS,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2007, pp. 538-539. [23] R.-C. Liu, T.-P. Wang, L.-H. Lu, H. Wang, and S.-H. Wang et al., “An 80GHz traveling-wave amplifier in a 90nm CMOS technology,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2005, pp. 154-155. [24] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcenski, and R. Groves et al., “A 12dBm 320GHz GBW distributed amplifier in a 0.12μm SOI CMOS,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2004, pp. 478-479. [25] B. Kleveland, C. H. Diaz, D. Vook, L. Madden, and T. H. Lee et al., “Monolithic CMOS distributed amplifier and oscillator,” in IEEE ISSCC Dig. Tech. Paper, Feb. 1999, pp. 70-71. [26] S. S. Mohan, M. del M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346-355, Mar. 2000. [27] S. Galal and B. Razavi, “Broadband ESD protection circuits in CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2334-2340, Dec. 2003. [28] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2389-2396, Dec. 2004. [29] J.-D. Jin and S. S. H. Hsu, "40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology," in Proc. Eur. Solid-State Circuits Conf., Sept. 2006, pp. 520-523. [30] J.-D. Jin and S. S. H. Hsu, “A 40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1449-1457, June 2008. [31] S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006. [32] J.-D. Jin and S. S. H. Hsu, “A 70-GHz transformer-peaking broadband amplifier in 0.13-μm CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2008, pp. 285-288. [33] C.-F. Liao and S.-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 642-655, Mar. 2008. [34] J.-D. Jin and S. S. H. Hsu, “Wideband CMOS transimpedance amplifier design using transformer-peaking technique,” in Solid State Devices and Materials, Sept. 2007, pp. 492-493. [35] TSMC, TSMC 0.18μm mixed signal 1P6M salicide 1.8V/3.3V RF spice models, T-018-MM-SP-001, Sept. 2004. [36] S. F. Tin, A. A. Osman, K. Mayaram, and C. Hu, “A simple subcircuit extension of the BSIM3v3 model for CMOS RF design,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 612-624, Apr. 2000. [37] M. S. Gupta, “Power gain in feedback amplifiers, a classic revisited,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 5, pp. 864-879, May 1992. [38] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 2004. [39] Sonnet. Sonnet Softw., North Syracuse, NY, 2003. [Online]. Available: http://www.sonnetusa.com [40] R. S. Engelbrecht and K. Kurokawa, “A wideband low noise L-band balanced transistor amplifier,” Proc. IEEE, vol. 53, no. 3, pp. 237-247, Mar. 1965. [41] K. Kurokawa, “Design theory of balanced transistor amplifiers,” Bell Syst. Tech. J., vol. 44, pp. 1675-1698, Oct. 1965. [42] I. Bahl, Lumped Elements for RF and Microwave Circuits. Norwood, MA: Artech House, 2003. [43] R. C. Frye, S. Kapur, and R. C. Melville, “A 2-GHz quadrature hybrid implemented in CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 550-555, Mar. 2003. [44] J.-D. Jin, S. S. H. Hsu, M.-T. Yang, and S. Liu, “Low-loss differential semicoaxial interconnects in CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4333-4340, Dec. 2006. [45] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901-1908, Sep. 2005. [46] G. Ghione and C. Naldi, “Parameters of coplanar waveguides with lower ground plane,” Electron. Lett., vol. 19, no. 18, pp. 734-735, Sep. 1983. [47] J.-D. Jin, S. S. H. Hsu, M.-T. Yang, and S. Liu, "Low-loss single and differential semi-coaxial interconnects in standard CMOS process," in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 420-423. [48] M. T. Yang, P. P. C. Ho, T. J. Yeh, Y. J. Wang, and D. C. W. Kuo et al., “On the millimeter-wave characteristics and model of on-chip interconnect transmission lines up to 110 GHz,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2005, pp. 1819-1822. [49] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1997. [50] Agilent. Using Advanced Design System to Design an MMIC Amplifier, Application Note Number 1462. [Online]. Available: http://literature.agilent.com/litweb/pdf/5988-9637EN.pdf [51] X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004. [52] L. M. Franca-Neto, B. A. Bloechel, and K. Soumyanath, “17 GHz and 24 GHz LNA designs based on extended-S-parameter with microstrip-on-die in 0.18 μm logic CMOS technology,” in Proc. Eur. Solid-State Circuits Conf., Sep. 2003, pp. 149-152. [53] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004. [54] B. Razavi, Design of Integrated Circuits For Optical Communications. Singapore: McGraw-Hill, 2003. [55] http://www.u2t.de/ [56] K. Han, J. Gil, S.-S. Song, J. Han, and H. Shin et al., “Complete high frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 726-735, Mar. 2005. [57] K. Han, H. Shin, and K. Lee, “Analytical drain thermal noise current model valid for deep submicron MOSFETs,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 261-269, Feb. 2004. [58] C. Kromer, G. Sialm, T. Morf, M. L. Schmatz, and F. Ellinger et al., “A low-power 20-GHz 52-dBΩ transimpedance amplifier in 80-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 885-894, June 2004. [59] E. Sackinger, Broadband Circuits For Optical Fiber Communication. New York: Wiley, 2005. [60] C. Q. Wu, E. A. Sovero, and B. Massey, “40-GHz transimpedance amplifier with differential outputs using InP-InGaAs heterojunction bipolar transistors,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1518-1523, Sep. 2003. [61] J. S. Weiner, J. S. Lee, A. Leven, Y. Baeyens, and V. Houtsma et al., “An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1720-1723, Oct. 2004. [62] R.-C. Liu and H. Wang, “DC-to-15- and dc-to-30-GHz CMOS distributed transimpedance amplifiers,” in IEEE RFIC Symp. Dig. Papers, June 2004, pp. 535-538. [63] B. Analui and A. Hajimiri, “Bandwidth enhancement for transimpedance amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1263-1270, Aug. 2004. [64] Z. Lu, K. S. Yeo, J. Ma, M. A. Do, W. M. Lim, and X. Chen, “Broadband design techniques for transimpedance amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 3, pp. 590-600, Mar. 2007. [65] C.-H. Wu, C.-H. Lee, W.-S. Chen, and S.-I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005. [66] J. S.Weiner, A. Leven, V. Houtsma, Y. Baeyens, and Y.-K. Chen et al., “SiGe differential transimpedance amplifier with 50-GHz bandwidth,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1512-1517, Sep. 2003.
|