跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:雷方奕
研究生(外文):Abbas -Mohammed
論文名稱:運用模擬研究田口方法的型I錯誤之風險
論文名稱(外文):THE ALPHA RISK OF TAGUCHI METHOD USING SIMULATION
指導教授:李明賢李明賢引用關係
指導教授(外文):Ming-Hsien Li
學位類別:博士
校院名稱:逢甲大學
系所名稱:工業工程與系統管理學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:101
中文關鍵詞:望大型直交表望目型訊號雜訊比田口方法望小型模擬
外文關鍵詞:Smaller-the-betterAlpha RiskOrthogonal ArraySimulationLarger-the-betterTaguchi MethodNominal-the-bestSignal-to-noise Ratio
相關次數:
  • 被引用被引用:1
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
田口方法廣泛地運用於參數設計,參數設計的目的乃是找出控制因子的水準,使得在該水準之品質特性值對雜訊因子之變異不敏感。為了達成這個目標,田口利用直交表設計實驗,以最小的時間和資源來獲得最佳化的設計參數。他利用訊號雜訊比來衡量品質績效,並對訊號雜訊比作變異數分析,以決定顯著因子之水準。在變異數分析中利用向上合併誤差法來估計誤差項之變異數,並使用F值等於4之準則來判定顯著因子。田口方法廣泛地運用在製造過程中,使其品質特性值對雜訊因子不敏感。即便如此,田口方法卻成了統計學者批判與討論的主題。
本研究藉由探討田口方法之型I錯誤的風險,延續這種批判與討論。型I錯誤的風險乃是將不顯著之因子誤判為顯著因子的概率。對各種靜態品質特性值利用直交表進行模擬分析。在本研究中,假設品質特性值呈常態分佈且具有相同的平均值與標準差。因此,所有的因子均不顯著之虛無假設是真的。然而模擬結果顯示所有的直交表,其型I錯誤的風險卻非常高,而造成參數設計之錯誤決策。因此,本研究之結論為田口方法不是參數設計的有效方法。本研究建議用更簡單且更有效的其他方案。
Taguchi method is a widely used approach for parameter design. The overall goal of parameter design is to find settings of the controllable factors so that the response is least sensitive to variations in the noise variables, while still yielding an acceptable mean level of the response. To achieve this goal, Taguchi utilizes an orthogonal array (OA) to obtain dependable information about the design parameter with minimum time and resources. Then, he adopts signal-to-noise (S/N) ratio as a quality measure evaluate performance. In the statistical analysis of S/N ratio, analysis of variance (ANOVA) is performed to determine significant factor effects. In ANOVA, Taguchi suggests pooling-up technique to obtain an estimate of error variance and adopts F value of four to decide significant factor effects. Taguchi method has widespread applications upstream in manufacturing to fine-tune a process in such a manner that the output is insensitive to noise factors. Nevertheless, this method was the subject of discussion and much debate among statisticians in different platforms. This research proposes an extension to ongoing research by investigating the alpha risk of Taguchi method, or the probability of identifying insignificant factors as significant, with mostly used OAs for different type static quality characteristics (QCH) using simulation. In this research, it is assumed that all QCH values are normally distributed with the same mean and standard deviation. Consequently, the null hypothesis that all factors are identified as insignificant is true. However, simulation results reveal that the alpha risk is very high with all OAs, which may provide erroneous conclusions in parameter design.
Table of Contents
Acknowledgment i
Chinese Abstract ii
English Abstract iii
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1 INTRODUCTION 1
1.1 Taguchi’s definition of quality 2
1.2 Taguchi’s orthogonal arrays 4
1.3 Taguchi’s signal-to-noise ratio 6
1.4 Taguchi’s parameter design 7
1.5 Motivation and research objectives 9
Chapter 2 LITERATURE REVIEW 11
2.1 Review and critique of orthogonal arrays 11
2.1.1. Two-level orthogonal arrays 11
2.1.2. Three-level orthogonal arrays 12
2.1.3. Mixed-level orthogonal arrays 13
2.1.4. Four-and five-level orthogonal arrays 14
2.2 Critique of signal-to-noise ratio 16
2.3 Critique of parameter design 18
Chapter 3 RESEARCH METHODOLOGY 21
3.1 Research assumptions 21
3.2 Simulation approach 22
3.3 Deciding number of pooled-up columns and 5 % significance level 24
Chapter 4 ALPHA RISK WITH TWO-LEVEL OAs 26
4.1 Pooling-up technique and F test with two-level OAs 26
4.2 The alpha risk for S/N ratio 27
4.2.1 The alpha risk for S/N ratio at four 27
4.2.2 alpha risk for S/N ratio at 5 % significance level 33 4.3 The alpha risk for a standardized QCH 37
4.4 Summary of alpha risk with two-level OAs 44
Chapter 5 ALPHA RISK WITH THREE-LEVEL OAs 46
5.1 Pooling-up and F test with three-level OAs 46
5.2 The alpha risk for S/N ratio 47
5.2.1 The alpha risk for S/N ratio at four 47
5.2.2 alpha risk for S/N ratio at 5 % significance level 51
5.3 The alpha risk for a standardized QCH 54
5.4 Summary of alpha risk with three-level OAs 56
Chapter 6 ALPHA RISK WITH MIXED-LEVEL OA 58
6.1 Pooling-up and F test with mixed-level OAs 58
6.2 The alpha risk for S/N ratio 60
6.2.1 The alpha risk for S/N ratio at four 60
6.2.2alpha risk for S/N ratio at 5 % significance level 61
6.3 The alpha risk for a standardized QCH 63
6.4 Summary of alpha risk results 64
Chapter 7 CONCLUSIONS AND FUTURE RESEARCH 66
7.1 Conclusions 66
7.2 Future research 67
Appendix A 68
Appendix B 74
References 86
[1]Ali N., Neto V.F., Mei S., Cabral G., Kousar Y., Titus E., Ogwu A.A., Mirsa D.S. and Gracio, J., “Optimisation of the new time-modulated CVD process using the Taguchi method.” Thin Solid Films, Vol. 469-470, pp. 154–160, (2004).
[2]Belavendram N., Quality by Design-Taguchi Techniques for Industrial Experimentation. Prentice Hall International, (1995).
[3]Ben-Gal I., “On the use of data compression measures to analyze robust designs. IEEE Transactions on Reliability, Vol. 54(3), pp. 381–388, (2005).
[4]Box G.E.P., “Off-line quality control, parameter design, and the Taguchi method-A discussion.” Journal of Quality Technology, Vol. 17(4), pp. 189–190, (1985).
[5]Box G.E.P, “Signal-to-noise ratios, performance criteria, and transformations.” Technometrics, Vol. 30(1), pp. 1–17, (1988).
[6]Box G.E.P., Bisgaard S., and Fung C., “An explanation and critique of Taguchi’s contributions to quality engineering.” Quality and Reliability Engineering International, Vol. 4, pp. 123–131, (1988).
[7]Box G.E.P. and Jones S., Designs for minimizing the effects of environmental variables. Technical Report, University of Wisconsin, (1992).
[8]Chao P.C.P., Huang J.S., and Chiu C.W., “Optimal Profile Design for the Resonator Beam of an Ultrasonic Motor via Finite Element Modeling and Taguchi Methodology.” Journal of Vibration and Acoustics, Vol. 126, pp. 465–475, (2004).
[9]Cheng C.C., Young M.S., Chuang C.L., and Chang C.C., “Fabrication optimization of carbon fiber electrode with Taguchi method.” Biosensors & Bioelectronics, Vol. 18, pp. 847– 855, (2003).
[10]Davim J.P., “An experimental study of the tribological behaviour of the brass/steel pair.” Material Processing Technology, Vol. 100, pp. 273�{277, (2000).
[11]Diamond W.J., Practical Experiment Designs for Engineers and Scientists. Van Nostrand Reinhold, New York, (1989).
[12]Engel J., “Modelling variations in industrial experiments.” Applied Statistics, Vol. 41, pp. 579–593, (1992).
[13]Evangelaras H. and Koukouvinos C., “Combined arrays with minimum number of runs and maximum estimation efficiency.” Communication in Statistics-Theory and Methods, Vol. 33(7), pp. 1621–1628, (2004).
[14]Fortanbary M.W., Mansager B.K., and Newberry C.F., “Supporting acquisition decisions through effective experimental design.” Mathematical and Computer Modelling, Vol. 23 (1-2), pp. 81–90, (1996).
[15]Fowlkes W.Y. and Creveling C.M., Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development. Addison-Wesley Publishing Company, (1995).
[16]Grego J.M., “Generalized linear models and process variation.” Journal of Quality Technology, Vol. 25, pp. 288–295, (1993).
[17]Hamada M. and Nelder J.A., “Generalized linear models for quality-improvement experiments.” Journal of Quality Technology, Vol. 29(3), pp. 292–304, (1997).
[18]Hu C.Y., Chang Y.J., Yin L.T., Tsao C.Y., and Chang C.H., “Optimal design of nickel-coated protein chips using Taguchi approach.” Sensors and Actuators, Vol. B108, pp. 665–670, (2005).
[19]Huang C.C. and Tang T.T., “Parameter optimization in melt spinning by neural networks and genetic algorithms.” International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 1113�{1118, (2006).
[20]Huang C.H. and Tai C.C., “The effective factors in the warpage problem of an injection-molded part with a thin shell feature.” Journal of Materials Processing Technology, Vol. 110, pp. 1–9, (2001).
[21]Hung C.C. and Shih H.C., “Experimental design method applied to microwave plasma enhanced chemical vapor deposition diamond films.” Journal of Crystal Growth, Vol. 233, pp. 723–729, (2001).
[22]Hunter J.S., Letter to editor. Quality Progress, pp.7–9, (1987).
[23]Kelly P.J., Arnell R.D., Hudson M.D., Wilson, A.E.J., and Jones, G., “Enhanced mechanical seal performance through CVD diamond films.” Vacuum, Vol. 61, pp. 61–74, (2001).
[24]Khoei A.R., Masters I., and Gethin D.T., “Design Optimization of Aluminium recycling processes using Taguchi technique.” Journal of Materials Processing Technology, Vol. 127, pp. 96–106, (2002).
[25]Kim S.J., Kim K.S., and Jang H., “Optimization of manufacturing parameters for a brake lining using Taguchi method.” Journal of Materials Processing Technology, Vol. 136, pp. 202–208, (2003).
[26]Ko D.C., Kim D.H., and Kim B.M., “Application of artificial neural network and Taguchi method to perform design in metal forming considering workability.” International Journal of Machine Tools & Manufacture, Vol. 39, pp. 771–785, (1999).
[27]Kuo C.F. and Wu Y.S., “Optimization of the film coating process for polymer blends by the grey-based Taguchi method.” International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 525–530, (2006).
[28]Lambiase A. and Miranda S., “Performance parameters optimization of a pneumatic programmable palletizer using Taguchi method.” Robotics and Computer Integrated Manufacturing, Vol. 19, pp. 147–155, (2003).
[29]Lee Y. and Nelder J.A., “Robust design via generalized linear models.” Journal of Quality Technology, Vol. 35(1), pp.2–12, (2003).
[30]Leon R.V., Shoemaker A.C., and Kacker R.N., “Performance measures independent of adjustment: An explanation and extension of Taguchi’s signal-to-noise ratios.” Technometrics, Vol. 29(3), pp. 253-265, (1987).
[31]Leon R.V., Shoemaker A.C., and Tsui K.L., “Discussion of a systematic approach to planning for a designed industrial experiment.” Technometrics, Vol. 35, pp. 21–24, (1993).
[32]Li M.H., “The alpha risk of the Taguchi method for STB type quality characteristic.” International Journal of Advanced Manufacturing Technology, Vol. 25, pp. 571–578, (2005).
[33]Li M.H. and Al-Refaie A., “The alpha error of Taguchi method with L16 array for the LTB response variable using simulation.” Journal of Statistical Computation and Simulation (to be published, 2008).
[34]Li M.H., Al-Refaie A., and Yang C.Y., “DMAIC approach to improve the capability of SMT solder printing process.” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, pp. 351�{360, (2008).
[35]Li M.H. and Hong C.C., “Optimal parameter design for chip-on-board technology using the Taguchi method.” International Journal of Manufacturing Technology, Vol. 18, pp. 847– 855, (2005).
[36]Li M.H., Kuo H.W., and Yang C.C., “The alpha risk of Taguchi method for LTB type quality characteristic with L8.” Quality & Quantity, Vol. 41, pp. 737�{748 (2007).
[37]Lin Z.C. and Ho C.Y., “Analysis and Application of Grey Relation and ANOVA in Chemical–Mechanical Polishing Process Parameters.” International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 10–14, (2003).
[38]Logothetis N., “The role of data transformation in Taguchi analysis.” Quality and Reliability Engineering International, Vol. 4, pp. 49–61, (1988).
[39]Lucas J.M., “Achieving a robust process using response surface methodology.” Proceedings of the American Statistical Association, 579–593, (1989).
[40]Maghsoodloo S., Ozdemir G., Jordan V., and Huang C.H., “Strengths and Limitations of Taguchi''s Contributions to Quality, Manufacturing and Process Engineering.” Journal of Manufacturing Systems, Vol. 23(2), pp. 73–126, (2004).
[41]May N.S. and Chappell P., “Finding critical variables for food heating, International Journal of Food Science and Technology, Vol. 37, pp. 503–513, (2002).
[42]Mei S., Yang J., Ferreira J.M.F., and Martins R., “Optimisation of parameters for aqueous tape-casting of cordierite-based glass ceramics by Taguchi method.” Materials Science and Engineering, Vol. A334, pp. 11–18, (2002).
[43]Montgomery D.C., “Using Fractional factorial designs for robust design process development.” Quality Engineering, Vol. 3, pp. 193–205, (1991).
[44]Montgomery D.C., Design and Analysis of Experiments. 5th edition, John Wiley & Sons, New York, (2001).
[45]Myers R.H., Khuri A.I., and Vining G.G., “Response surface alternatives to the Taguchi robust parameter design approach.” American Statisticians, Vol. 46, pp. 131–139, (1992).
[46]Nair V.N., “Taguchi’s parameter design: a panel discussion.” Technometrics, Vol. 34, pp. 127–161, (1992).
[47]Nian C.Y., Yang W.H., and Tarng Y.S., “Optimization of turning operations with multiple performance characteristics.” Journal of Materials Processing Technology, Vol. 95, pp. 90�{96, (1999).
[48]Peace G.S., Taguchi Methods–A Hands-on-Approach. Addison-Wesley Publishing Company, Inc., (1993).
[49]Phadke M.S., Quality Engineering Using Robust Design. Prentice-Hall, Englewood Cliffs, NJ, (1989).
[50]Pignatiello J.J., “An overview of the strategy and tactics of Taguchi.” IIE Transactions: Industrial Engineering Research and Development, Vol. 20(3), pp. 247–254, (1988).
[51]Romano D., Varetto M., and Vicario G., “Multiresponse robust design: A general framework based on combined array.” Journal of Quality Technology, Vol. 36(1), pp. 27–37, (2004).
[52]Ross P.J., Taguchi Techniques for Quality Engineering. McGraw Hill, (1996).
[53]Shoemaker A.C. and Tsui K., “Response model analysis for robust design.” Communication in Statistics-simulation and Computation, Vol. 22, pp. 1037–1064, (1993).
[54]Shoemaker A.C., Tsui K.L., and Wu C.F.J., “Economical experimentation methods for robust parameter design.” Technometrics, Vol. 33, pp. 415–427, (1991).
[55]Su C.T., and Chiang T.L., “Optimizing the IC wire bonding process using a neural networks/genetic algorithms approach.” Journal of Intelligent Manufacturing, Vol. 14, pp. 229-238, (2003).
[56]Syrcos G.P., “Die casting process optimization using Taguchi methods.” Journal of Materials Processing Technology, Vol. 135, pp. 68–74, (2003).
[57]Taguchi G., Introduction to Quality Engineering. American Supplier Institute, MI, (1985).
[58]Taguchi G., System of Experimental Design. Unipub/Kraus International, White Plains, NY, (1987).
[59]Taguchi G., Taguchi Methods Research and Development. Vol. 1. MI.: American Suppliers Institute Press, Dearborn, (1991).
[60]Tosun N., Cogunb C., and Tosun G., “A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method.” Journal of Materials Processing Technology, Vol. 152, pp. 316–322, (2004).
[61]Tsao C.C. and Hocheng H., “Comparison of the tool life of the tungsten carbides coated by multi-layer TiCN and TiAICN for end mills using the Taguchi method.” Journal of Materials Processing Technology, Vol.123, pp. 1–4, (2002).
[62]Tsui K.L., “A critical look at Taguchi’s modelling approach for robust design.” Journal of Applied Statistics, Vol. 23(1), pp. 81–95, (1996).
[63]Wang G.J. and Chou M.H., “A neural-Taguchi-based quasi time-optimization control strategy for chemical-mechanical polishing processes.” International Journal of Advanced Manufacturing Technology, Vol. 26, pp. 759–765, (2005).
[64]Welch W.J., Yu T.K., Kang S.M., and Sacks J., “Computer experiments for quality control by parameter design.” Journal of Quality Technology, Vol. 22, pp. 15-22, (1990).
[65]Zhang L., Kuriyagawa T., Kaku T. and Zhao J., “Investigation into electrorheological fluid-assisted polishing.” International Journal of Machine Tools & Manufacture, Vol. 45, pp.1461–1467, (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊