跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈拓江
研究生(外文):Shen, To-Chiang
論文名稱:多電極液晶透鏡應用在2D/3D轉換影像之設計
論文名稱(外文):Autostereoscopic 2D-3D Switching Display With Multi-Electrically Driven Cylindrical Liquid Crystal Lens
指導教授:謝漢萍謝漢萍引用關係黃乙白黃乙白引用關係
指導教授(外文):Shieh, Han-PingHuang, Yi-Pai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:78
中文關鍵詞:3D
外文關鍵詞:3D
相關次數:
  • 被引用被引用:2
  • 點閱點閱:974
  • 評分評分:
  • 下載下載:212
  • 收藏至我的研究室書目清單書目收藏:1
為了得到更自然的立體影像,近年來已吸引許多專家及廠商投入立體顯示器的發展。藉由對影像融入視覺上的深度,這些技術讓消費者更能感知到更真實的立體效果。對於不需配戴眼鏡的3D顯示器來說,需要固定式的光學元件例如:視差遮罩或柱狀透鏡。然而絕大多數顯示器皆應用於2D影像顯示,增加這些額外3D光學元件,會造成2D影像品質的降低。
為了能有3D影像且維持2D影像品質,可藉由轉換光學元件來造成光路徑的更改,藉此便能達成2D與3D影像間高自由度的切換。本論文設計出能自由切換於2D影像與3D影像的光學元件(MeDLC),針對其聚焦能力做了評估,以降低其影像間互相干擾的效果,進而提升立體顯示之影像品質與效率。
模擬中,設計出其最佳結構,並達到理想曲線。實作上,可達到近乎完美的理想曲線。從量測結果MeDLC在beam size上比傳統雙電極液晶透鏡小了35%,數值孔徑分析中MeDLC也較傳統的高出了66%,再者,電壓的需求也較為的低。因此,在crosstalk影響的程度上,比傳統透鏡降低了約43%。
In order to get more natural 3D sensation from displays, many researchers and manufacturers were attracted to invest in the development of 3D display technology in recent years. These technologies make it possible for the users to obtain more immersive experience by adding the real depth to the visual content shown on the display. In the case of non-glasses lenticular lens sheets must be prepared. However, since most of display applications have majority in displaying 2D image content, the fixed optical elements used for the 3D modes cause the degradation of the displayed 2D image quality.
To overcome the degradation of 2D image quality under a given 3D displays, optical paths must be controlled by switching the optical elements to change 2D and 3D modes. In this thesis we designed an optical component that can switched between 2D and 3D images, and estimate the focusing capability to reduce the effect of crosstalk. So that can enhance the image quality of 3D images.
In the simulation results, an optimized structure was designed to fit the lens-like distribution. The lens-like distribution has vivid improved compared to that of conventional double electrode LC lens. In experiment, the lens-like distribution was achieved as well. The measurement result also indicates that our device is closer to the ideal lens-like distribution. And the numerical aperture (NA) of our device shows an improve by a factor of 1.66. Also the voltage requirement is much lower with same NA. In addition, due to a smaller beam size of proposed design the crosstalk of our device is lower than that of the conventional double electrode LC lens about 43%. In conclusion, the 3D displays with proposed method not only smaller beam size and lower crosstalk, but lower operation voltage.
Table of Contents
摘 要 i
Abstract ii
誌 謝 iv
Figure Captions vii
List of Tables x
Chapter 1 1
1.1 Preface 1
1.2 Principle of 3D image 2
1.3 3D display technologies 5
1.3.1 Stereoscopic 5
1.3.2 Auto-stereoscopic 6
1.3.3 Multiplexed-2D type displays 6
1.3.4 2D/3D switching methods 10
1.4 Motivation and Objective 14
1.5 Organization 15
Chapter 2 16
2.1 Introduction to liquid crystal 16
2.1.1 Liquid crystal orientation to match the index of refraction 17
2.2 Introduction to Gradient Index Optics 19
2.3 Conventional LC lens 22
2.4 LC lens with 2D/3D switching 25
2.4.1 Active LC Lenticular lens 26
2.4.2 Polarization activated microlens 26
2.4.3 Electric-field driven LC lens (ELC lens) 28
2.5 Crosstalk phenomenon of LC-lens on 3D displays. 29
2.6 Summary 30
Chapter 3 31
3.1 Introduction 31
3.2 Fabrication process 31
3.3 Measurement system 37
Chapter 4 40
4.1 Issues of conventional 2D/3D switching technologies 40
4.2 Introduction to MeDLC 41
4.3 Electrode design of MeDLC 42
4.3.1 Simulation Steps 42
4.3.2 Simulation result 44
4.4 Discussion 48
4.5 Summary 49
Chapter 5 50
5.1 Introduction 50
5.2 Measurement results and discussion 50
5.2.1 Phase profile reconstruction 51
5.2.2 Beam Size 54
5.2.3 Crosstalk phenomenon 56
5.3 Numerical Aperture vs. Operation Voltage 58
5.4 Summary 60
Chapter 6 61
6.1 Conclusions 61
6.2 Future work 62
Reference 65
Reference
[1] J. Mansson, “Stereovision: A model of human stereopsis,” Lund Univ. Congnitive Science, Tech. Rep., (1998)
[2] E. Edirisinghe, J.Jiang, “Stereo image, an emerging technology”. SSGRR, L’Aquila,Italy, (2000)
[3] L. Hill, A. Jacobs “Invited paper: 3-D Liguid Crystal Displays and Their Applications” IEEE Vol. 94, No. 3, March (2006)
[4] J. S. Kollin, S. A. Benton, M. L. Jepsen,”Real-Time Display of 3-D Computed Holograms by Scanning the Image of an Acoustic-Optic Modulator,” SPIE Proceedings, Vol. 1212, pp.174 (1990)
[5] “Laser Based 3D Volumetric Display System,” US Patent No. 5,854,613 (1998)
[6] K. Toyooka, T. Miyashita, T. Uchida, Proc. SID’01, pp.174 (2001).
[7] T. Sasagawa, A. Yuuki, S. Tahata, O. Murakami, K. Oda, ”Dual Directional Backlight for Stereoscopic LCD”, Proc. SID’03, pp.399 (2003).
[8] Y. M. Chu, K. W. Chien, H. P. D. Shieh, J. M. Chang, A. Hu, Y. C. Shiu, and V. Yang, J. Soc. Inf. Display, No.13, pp.875 (2005).
[9] K. W. Chien and H. P. D. Shieh, Appl. Opt., No.45, pp.3106 (2006).
[10] L. Lipton et al., Proc. SPIE, No.4660, pp.229 (2002).
[11] G. Woodgate, J.Harrold, A. Jacobs, etc., “Flat panel autostereoscopic displays-characterization and enhancement”, Proc. SPIE, Stereoscopic Displays and Virtual Reality Systems VII, vol. 3957, pp.153-164, Apr. (2000).

[12] D. Takemori, K. Kanatami, S. Kishimoto, S. Yoshi, and H. Kanayama, Proc. SID’95, pp.55 (1995).
[13] H. Morishima, H. Nose, etc., “Rear cross lenticular 3D display without eyeglasses”, Proc. SPIE, Stereoscopic Displays and Virtual Reality Systems VII, vol.3295, pp.193-202, Apr. (1998).
[14] Cees van Berkel and John A Clarke. “Characteisation and optimization of 3D-LCD module design”, Proc. SPIE, Vol.3012, pp.179-187 (1997)
[15] J. Young, B. Javidi, “Three-dimensional image methods based on multiview images”, J. Display. Tech., Vol. 1, pp.125-140, (2005).
[16] H. Isono et al. Japanese Pat. Appln.JP03-119889, (1991)
[17] M.G.H Hiddink, S.T. de Zwart, etc. “20.1: Locally switchable 3D displays”, SID pp.1142-1145 (2006)
[18] W.L. IJzerman, S.T. de Zwart, T. Dekker, “Design of 2D/3D switchable displays”, SID, pp.98-101, (2005)
[19] Hyung-ki Hong, Sung-min Jung, etc. “25.3: Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC Lens)”, SID pp.348-351 (2008)
[20] G.J. Woodgate, J. Harrold, “A new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses”, SID, pp.378-381, (2005)
[21] G.J. Woodgate, J. Harrold, “Key design issues for autostereoscopic 2D/3D displays”, Euro. Display, pp.1-4, 10 September (2005)
[22] S.J. Battersby, “Auto-stereoscopic Display Apparatus”, US6069650, (2000).

[23] G.J. Woodgate, J. Harrold, “LP.1:High Efficiency Reconfigurable 2D/3D Autostereoscopic Display”, SID Digest (2003)
[24] Stephen T. Kowel, Dennis S. Cleverly and Philipp G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell.”, Applied Optics, Vol.23, No.2, pp.278-289 (1984)
[25] P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Chapter 4, J. Wiley and Sons, New York (1999)
[26] GRINTECH, http://www.grintech.de
[27] E. Hecht, Optics (Forth Edition), Addison Wesley (2002).
[28] H. REN, Y.H. FAN, et al. “Tunable-Focus Cylindrical Liquid Crystal Lens”, Jpn. J. Appl. Phys. Vol. 43 pp.652 (2004)
[29] E.J.A. Brouwer, “Frequency analysis on a 3D display”, Koninklijke Philips Electronics N.V., Technical note PR-TN 2005/00947, (2004)
[30] Y.H. LIN, at el. “Tunable-Focus Cylindrical Liquid Crystal Lenses”, Jpn. J. Appl. Phys. Vol. 44, No. 1, pp.243-244,(2005)
[31] S. SATO, “Applications of Liquid Cristal to Variable-Focusing Lenses”, Opt. Re. Vol.6, No. 6, pp.471-475 (1999)
[32] Y.P. Huang, C.W. Chen, T.C. Shen, “Invited paper: High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeDLC) lens”, SID, pp.336-339, (2009)
[33] T.C. Shen, L.Y. Liao, C.W. Chen, Y.P. Huang, H.P. Shieh, “Autostereoscopic 2D-3D display with multi electrically driven cylindrical liquid crystal lens”, OPT, (2009)
[34] T. Jarvenpaa, M. Salmimaa, “Optical characterization of autostereoscopic”, J. SID, pp.825-833, (2008)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top