|
1.Tokar, E. J.; Diwan, B. A.; Waalkes, M. P., Early life inorganic lead exposure induces testicular teratoma and renal and urinary bladder preneoplasia in adult metallothionein-knockout mice but not in wild type mice. Toxicology 2010, 276 (1), 5-10. 2.Abu-Dari, K.; Hahn, F. E.; Raymond, K. N., Lead sequestering agents. 1. Synthesis, physical properties, and structures of lead thiohydroxamato complexes. Journal of the American Chemical Society 1990, 112 (4), 1519-1524. 3.Bressler, J.; Kim, K.-a.; Chakraborti, T.; Goldstein, G., Molecular Mechanisms of Lead Neurotoxicity. Neurochemical Research, 1999, 24 (4), 595-600. 4.Bridgewater, B. M.; Parkin, G., Lead Poisoning and the Inactivation of 5-Aminolevulinate Dehydratase as Modeled by the Tris(2-mercapto-1-phenylimidazolyl)hydroborato Lead Complex, {[TmPh]Pb}[ClO4]. Journal of the American Chemical Society 2000, 122 (29), 7140-7141. 5.Andersen, R. J.; diTargiani, R. C.; Hancock, R. D.; Stern, C. L.; Goldberg, D. P.; Godwin, H. A., Characterization of the First N2S(alkylthiolate)lead Compound: A Model for Three-Coordinate Lead in Biological Systems†. Inorganic Chemistry 2006, 45 (17), 6574-6576. 6.Barry, B. M.; Stein, B. W.; Larsen, C. A.; Wirtz, M. N.; Geiger, W. E.; Waterman, R.; Kemp, R. A., Metal Complexes (M = Zn, Sn, and Pb) of 2-Phosphinobenzenethiolates: Insights into Ligand Folding and Hemilability. Inorganic Chemistry 2013, 52 (17), 9875-9884. 7.Hong, R.-L., Development of tetradentate thiolatophosphine ligands and their metal complexes: Syntheses and Characterization of cadmium(II) and lead(II) complexes. 國立成功大學化學研究所碩士論文2013. 8.Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E., Hydrogenases. Chemical Reviews 2014, 114 (8), 4081-4148. 9.Yang, X.; Hall, M. B., Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen, Fe−Hδ−•••Hδ+−O, Bond and Methenyl-H4MPT+ Triggered Hydride Transfer. Journal of the American Chemical Society 2009, 131 (31), 10901-10908. 10.Hiromoto, T.; Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Shima, S.; Ermler, U., The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Letters 2009, 583 (3), 585-590. 11.Chen, D.; Scopelliti, R.; Hu, X., Synthesis and Reactivity of Iron Acyl Complexes Modeling the Active Site of [Fe]-Hydrogenase. Journal of the American Chemical Society 2010, 132 (3), 928-929. 12.Melgarejo, D. Y.; Chiarella, G. M.; Koch, S. A. Synthetic analogs for the iron centers in Ni-Fe and the iron-sulfur cluster free hydrogenase enzymes. Abstracts of Papers; 234th National Meeting of the American Chemical Society, Boston, MA, United States, August 19-23, 2007; American Chemical Society: Washington, DC, 2007; http://oasys2.confex.com/acs/234nm/techprogram/P1116341.HTM. 13.Wang, X.; Li, Z.; Zeng, X.; Luo, Q.; Evans, D. J.; Pickett, C. J.; Liu, X., The iron centre of the cluster-free hydrogenase (Hmd): low-spin Fe(II) or low-spin Fe(0)? Chemical Communications 2008, (30), 3555-3557. 14.Zumft, W. G., Biogenesis of the Bacterial Respiratory CuA, Cu-S Enzyme Nitrous Oxide Reductase. Journal of Molecular Microbiology and Biotechnology 2005, 10 (2-4), 154-166. 15.Rosenzweig, A. C., Nitrous oxide reductase from CuA to CuZ. Nat Struct Mol Biol 2000, 7 (3), 169-171. 16.Pomowski, A.; Zumft, W. G.; Kroneck, P. M. H.; Einsle, O., N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase. Nature 2011, 477 (7363), 234-237. 17.Houser, R. P.; Young, V. G.; Tolman, W. B., A Thiolate-Bridged, Fully Delocalized Mixed-Valence Dicopper(I,II) Complex That Models the CuA Biological Electron-Transfer Site. Journal of the American Chemical Society 1996, 118 (8), 2101-2102. 18.Houser, R. P.; Halfen, J. A.; Young, V. G.; Blackburn, N. J.; Tolman, W. B., Structural Characterization of the First Example of a Bis(m-thiolato)dicopper(II) Complex. Relevance to Proposals for the Electron Transfer Sites in Cytochrome c Oxidase and Nitrous Oxide Reductase. Journal of the American Chemical Society 1995, 117 (43), 10745-10746. 19.Ho, Y.-H.; Chang, M.-C.; Yu, K.-H.; Liu, Y.-H.; Wang, Y.; Cheng, Y.-C.; Chen, J.-T., CO2 fixation by dicopper(ii) complexes in hypodentate framework of N8O2. Dalton Transactions 2014, 43 (17), 6287-6290. 20.Neuba, A.; Flörke, U.; Meyer-Klaucke, W.; Salomone-Stagni, M.; Bill, E.; Bothe, E.; Höfer, P.; Henkel, G., The Trinuclear Copper(I) Thiolate Complexes[Cu3(NGuaS)3]0/1+ and their Dimeric Variants [Cu6(NGuaS)6]1+/2+/3+ with Biomimetic Redox Properties. Angewandte Chemie International Edition 2011, 50 (19), 4503-4507. 21.Huang, C.-M., Development of the Tetradentate Diphosphanyl-bisbenzenethiolate S, P, P, S ligand: Synthesis and Characterization of a Dicopper Complex with S, P, P, S ligand. 國立成功大學化學研究所碩士論文2014, 66, 20-21. 22.Belle, C.; Rammal, W.; Pierre, J.-L., Sulfur ligation in copper enzymes and models. Journal of Inorganic Biochemistry 2005, 99 (10), 1929-1936. 23.Gennari, M.; Pécaut, J.; DeBeer, S.; Neese, F.; Collomb, M.-N.; Duboc, C., A Fully Delocalized Mixed-Valence Bis-μ(Thiolato) Dicopper Complex: A Structural and Functional Model of the Biological CuA Center. Angewandte Chemie International Edition 2011, 50 (25), 5662-5666. 24.Fernández, P.; Sousa-Pedrares, A.; Romero, J.; Durán, M. L.; Sousa, A.; Pérez-Lourido, P.; García-Vázquez, J. A., Synthesis and Structural Characterization of Cobalt, Nickel and Copper Phosphanylthiolato Complexes. European Journal of Inorganic Chemistry 2010, 2010 (5), 814-823. 25.Van Koten, G.; Noltes, J. G.; Spek, A. L., Group IB organometallic chemistry : XXXVII. Complex forming reactions of polynuclear arylcopper compounds: Calk−P bond cleavage in 1,2-bis(diphenylphosphino)ethane (diphos) by (2-Me2NCH2C6H4)4Cu4 and crystal structure of [(C6H5)2PCu • diphos]2 • 2 C6H6. Journal of Organometallic Chemistry 1978, 159 (4), 441-463. 26.Lyon, E. J.; Shima, S.; Boecher, R.; Thauer, R. K.; Grevels, F.-W.; Bill, E.; Roseboom, W.; Albracht, S. P. J., Carbon Monoxide as an Intrinsic Ligand to Iron in the Active Site of the Iron−Sulfur-Cluster-Free Hydrogenase H2-Forming Methylenetetrahydromethanopterin Dehydrogenase As Revealed by Infrared Spectroscopy. Journal of the American Chemical Society 2004, 126 (43), 14239-14248. 27.Sadique, A. R.; Brennessel, W. W.; Holland, P. L., Reduction of CO2 to CO using Low-Coordinate Iron: Formation of a Four-Coordinate Iron Dicarbonyl Complex and a Bridging Carbonate Complex. Inorganic chemistry 2008, 47 (3), 784-786. 28.Guo, Y.; Wang, H.; Xiao, Y.; Vogt, S.; Thauer, R. K.; Shima, S.; Volkers, P. I.; Rauchfuss, T. B.; Pelmenschikov, V.; Case, D. A.; Alp, E. E.; Sturhahn, W.; Yoda, Y.; Cramer, S. P., Characterization of the Fe Site in Iron−Sulfur Cluster-Free Hydrogenase (Hmd) and of a Model Compound via Nuclear Resonance Vibrational Spectroscopy (NRVS). Inorganic Chemistry 2008, 47 (10), 3969-3977. 29.Takács, J.; Soós, E.; Nagy-Magos, Z.; Markó, L.; Gervasio, G.; Hoffmann, T., Synthesis and molecular structure of carbonyl derivatives of iron(II) thiolates containing nitrogen-donor ligands. Inorganica Chimica Acta 1989, 166 (1), 39-46. 30.Liaw, W.-F.; Chen, C.-H.; Lee, G.-H.; Peng, S.-M., Iron Pyridine-2-thiolate Complexes: Interconversion of [Fe0(CO)4(SC5H4N)]-, cis-[FeII(CO)2(SC5H4N)2], and [FeII(SC5H4N)3]. Organometallics 1998, 17 (11), 2370-2372. 31.Mauro, A. E.; Casagrande Jr, O. L.; Nogueira, V. M.; Santos, R. H. A.; Gambardella, M. T. P.; Lechat, J. R.; Filho, M. F. J., Reaction of pentacarbonyliron with a nitrogen heterocycle. X-ray crystal structure of bis[(carbonyl)(quinoline-2-thiolate-N,S)]iron(II). Polyhedron 1993, 12 (3), 297-301.
|