跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊鴻偉
研究生(外文):Yang horng-woei
論文名稱:利用青花菜篩管液RNA圖譜分離出FVE與AGL24兩個開花活化因子為篩管液中可移動之RNA
論文名稱(外文):Analyse of Phloem Sap Transcription Profile Revealed Two Floral Activators, FVE and AGL24 are Phloem-mobile RNAs
指導教授:余天心余天心引用關係
指導教授(外文):Yu tien-shin
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:篩管液青花菜篩管液可運移之RNA
外文關鍵詞:phloem sapphloem-mobile RNABrassica oleracea
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物運用維管束系統來面對環境中多樣的刺激,以調節自身的生長發育。近來的研究證實, 植物在葉部整合光週期的變化並利用維管束系統長距離輸送 FLOWERING LOCUS T (FT) 至頂芽,促進植物的開花。因此,FT 被認為是追尋已久的開花素 (Florigen)。然而,影響植物開花的因素除了光週期外,證據顯示尚有其他基因在植物開花的路徑中扮演系統性的調控因子。我們分析青花菜收取之篩管液,企圖找出潛在的系統性開花調控因子。利用阿拉伯芥生物晶片 (Arabidopsis GeneChip, ATH1-121501) 及反轉錄聚合酶連鎖反應 (RT-PCR) 的分析方法,從青花菜篩管液中鑑定出 FVE 與 AGAMOUS-LIKE 24 (AGL24) 兩個與開花調控有關的 RNA 分子。酵素學上的分析顯示篩管液中的 FVE 與 AGL24 的 RNA 帶有 5'-cap 結構及 polyadenylation tail。進一步,我們以野生型阿拉伯芥為接穗,嫁接至 FVE 或 AGL24 轉殖株之砧木上。利用 RT-PCR 的方式,可由野生型接穗偵測出 FVE 或 AGL24 轉殖基因之 RNA。顯示 FVE 與 AGL24 RNA 可在阿拉伯芥中進行長距離運送。綜合以上結果我們推論,FVE 與 AGL24 可能藉由長距離運送的方式,進而調控植物開花。
Plants take advantage of the vascular system to operate environmental stimulates for fine-tuning their developmental programs. Recent evidence shows that the FLOWERING LOCUS T (FT) protein is the long-sought-after florigen that integrates the photoperiod variation perceived in the leaves. However, evidence also supports that other yet-to-be identified systemic regulators participate in floral induction. To this end, we investigated phloem exudates from excised broccoli (Brassica oleracea) inflorescences. Microarray and RT-PCR analyses revealed that at least two RNAs of floral regulators, FVE and AGAMOUS-LIKE 24 (AGL24), are present in the phloem sap. Enzymatic analysis demonstrated that the phloem-sap RNAs contain a 5' cap and a polyadenlylation tail, which suggests that phloem sap contains typical mRNAs. Arabidopsis grafting experiments were used to test whether these RNAs move long distance along the phloem translocation stream. Consistent with previous reports, Arabidopsis transformants expressing FVE and AGL24 displayed an early flowering phenotype. When wild-type scions were grafted onto P35S-FVE or P35S-AGL24 transformant stocks, the RNAs of transgenic FVE and AGL24 were detected from the wild-type scions. Thus, both FVE and AGL24 RNAs can move long distance across the graft union. Our data support the notion that multiple systemic floral regulators may participate in floral regulation.
前言 …………………………………………………………………………. 1
材料與方法 …………………………………………………………………. 4
植物材料 ……………………………………………………………… 4
青花菜篩管液收集與 RNA 的萃取 …………………………………... 6
篩管液中蔗糖含量測定 …………………………………………….... 7
阿拉伯芥生物晶片(ATH1-121501, Affymetrix) 的雜合 (GeneChip hybridization) 與資料分析 …………………………………………… 8
校正程式 (probe masking files) 導入與分析方法 …………………… 9
聚合酶連鎖反應所需之基因引子對的搜尋與設計 ………………… 10
反轉錄聚合酶連鎖反應 (RT-PCR) ………………………………….. 11
mRNA decapping 檢測法 …………………………………………….. 12
質體 DNA 的構築 ……………………………………………………. 13
農桿菌基因轉殖 ……………………………………………………… 13
阿拉伯芥開花枝嫁接法 ……………………………………………… 14
結果 ………………………………………………………………………… 16
篩管液的收取與定性 ………………………………………………… 16
阿拉伯芥生物晶片分析 ……………………………………………… 17
青花菜篩管液基因群、維管束基因群與阿拉伯芥葉子基因群之比較 21
篩管液基因群分布在每個功能類別中 ……………………………… 21
青花菜篩管液中的 RNA 具有 5’ cap 與 polyadenylation tail ………. 22
青花菜篩管液中可偵測出與開花訊息調控路徑相關的 RNA 分子 .. 23
FVE 與 AGL24 RNA 在阿拉伯芥中會進行長距離運送 ……………. 24
許多有關植物訊息調控的路徑也有 RNA 分子存在青花菜篩管液中 . 25
討論 ………………………………………………………………………… 26
參考文獻 …………………………………………………………………… 31
Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
Asano, T., Masumura, T., Kusano, H., Kikuchi, S., Kurita, A., Shimada, H., and Kadowaki, K. (2002). Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J. 32, 401-408.
Ausin, I., Alonso-Blanco, C., Jarillo, J.A., Ruiz-Garcia, L., and Martinez-Zapater, J.M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. Genetics 36, 162-166.
Ayre, B., and Turgeon, R. (2004). Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol. 135, 2271-2278.
Banerjee, A.K., Chatterjee, M., Yu, Y., Suh, S.-G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457.
Bernfeld, P. (1995). Amylase and enzymes of carbohydrate metabolism. Method in Enzymology. Coowick, S.P., and N.O. Kaplan (eds.). New York: Academic Press. 1, 149-158
Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C., and Kehr, J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739-749.
Chinnusamy, V., Zhu, J., and Zhu, J.-K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12, 444-451.
Chiou, T.-J., Aung, K., Lin, S.-I., Wu, C.-C., Chiang, S.-F., and Su, C.-L. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412-421.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simple method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakoumtis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
Deeken, R., Ache, P., Kajahn, I., Klinkenberg, J., Bringmann, G., and Hedrich, R. (2008). Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J. 55, 746-759.
Doering-Saad, C., Newbury, H.J., Bale, J.S., and Pritchard, J. (2002). Use of aphid stylectomy and RT-PCR for he detection of transporter mRNAs in sieve elements. J. Exp. Bot. 53, 631-637.
Doering-Saad, C., Newbury, H.J., Couldridge, C.E., Bale, J.S., and Pritchard, J. (2006). A phloem-enriched cDNA library from Ricinus: insights into phloem function. J. Exp. Bot. 57, 3183-3193.
Giakountis, A., and Coupland, G. (2008). Phloem transport of flowering signals. Curr. Opin. Plant Biol. 11, 1-8.
Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A., and Kehr, J. (2006). Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896-909.
Grant, M., and Lamb, C. (2006). Systemic immunity. Curr. Opin. Plant Biol. 9, 414-420.
Gu, Q., Ferrandiz, C., Yanofsky, M.F., and Martienssen, R. (1998). The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509-1517.
Hammond, J.P., Broadley, M.R., Craigon, D.J., Higgins, J., Emmerson, Z.F., Townsend, H.J., White, P.J., and May, S.T. (2005). Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide array when applied to heterologous species. Plant Methods 1, 10.
Hall, S.M., and Baker, D.A. (1972). The chemical composition of Ricinus phloem exudate. Planta 106, 131-140.
Haywood, V., Yu, T.S., Huang, N.-C., and Lucas, W.J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J. 42, 49-68.
Hir, R.L., Beneteau, J., Bellini, C., Vilaine, F., and Dinant, S. (2008). Gene expression profiling: keys for investing phloem functions. Trends Plant Sci. 13, 273-280.
Huang, N.-C., and Yu, T.S. (2009). The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. Plant J. (in press)
Imaizumi, T., and Kay, S.A. (2006). Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550-558.
Ivashikina, N., Deeken, R., Ache, P., Kranz, E., Pommerrenig, B., Sauer, N., and Hedrich. R. (2003). Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J. 36, 931-945.
Ji, W., Zhou, W., Gregg, K., Yu, N., Davis, S., and Davis, S. (2004). A method for cross-species gene expression analysis with high-density oligonucleotide arrays. Nucleic Acids Res. 32, e93.
Kehr, J., and Buhtz, A. (2008). Long distance transport and movement of RNA through the phloem. J. Exp. Bot. 59, 85-92.
Kim, M., Canio, W., Kessler, S., and Sinha, N. (2001). Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287-289.
Kim, H.J., Hyun, Y., Park, J.Y., Park, M.J., Park, M.K., Kim, M.D., Kim, H.J., Lee, M.H., Moon, J., Lee, I., and Kim, J. (2004). A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat. Genetics 36, 167-171
Kobayashi, Y., and Weigel, D. (2007). Move on up, it’s time for change mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371-2384.
Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 521-535.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66.
Lan, T.-H., DelMonte, T.A., Reischmann, K.P., Hyman, J., Kowalski, S.P., McFerson, J., Kresovich, S., and Paterson, A.H. (2000). An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res. 10, 776-788.
Li, C., Zhang, K., Zeng, X., Jackson, S., Zhou, Y., and Hong, Y. (2009). A cis-element within Flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J. Virol. 83, 3540-3548
Lough, T.J., and Lucas, W.J. (2006). Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203-232.
Lucas, W.J., Yoo, B.C., and Kragler, F. (2001). RNA as a long-distance information macromolecule in plants. Nature Review Molecular Cell Biology 2, 849-857.
Michaels, S.D., Ditta, G., Gustafson-Brown, C., Pelaz, S., Yanofsky, M., and Amasino, R.M. (2003). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J. 33, 867-874.
Melzer, S., Lens, F., Genen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008). Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat. Genetics. 12, 1489-1492.
Mandel, M.A., and Yanofsky, M.F. (1995). The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell. 7, 1763-1771.
Muller, B., and Sheen, J. (2007). Arabidopsis cytokinin signaling pathway. Sci. STKE cm5.
Nakazono, M., Qui, F., Borsuk, L.A., and Schnable, P.S. (2003). Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 583-596.
Omid, A., Keilin, T., Glass, A., Leshkowitz, D., and Wolf, S. (2007). Characterization of phloem-sap transcription profile in melon plants. J. Exp. Bot. 58, 3645-3656.
Palauqui, J.C., Elmayan, T., Pollien, J.-M., and Vaucheret, H. (1997). Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738-4745.
Pant, B.D., Buhtz, A., Kehr, J., and Scheible, W.-R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731-738.
Pommerrenig, B., Barth, I., Niedermeier, M., Kopp, S., Schmid, J., Dwyer, R.A., McNair, R.J., Klebl, F., and Sauer, N. (2006). Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. Plant Physiol. 142, 1427-1441.
Ruiz-Medrano, R., Xoconostle-Cázares, B., and Lucas, W.J. (1999). Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405-4419.
Sasaki, T., Chino, M., Hayashi, H., and Fujiwara, T. (1998). Detection of several mRNA species in rice phloem sap. Plant Cell Physiol. 39, 895-897.
Schilmiller, A.L., and Howe, G.A. (2005). Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8, 369-377.
Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, A., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898-912.
Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6, 410-417.
Stepanova, A.N., and Alonso, J.M. (2005). Arabidopsis ethylene signaling pathway. Sci. STKE cm4.
Turck, F., Fornara, F., and Coupland, G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573-594.
Turgeon, R., and Wolf, S. (2009). Phloem transport: cellular pathways and molecular trafficking. Annu. Rev. Plant Biol. 60, 207-221.
van Bel, A.J.E. (2003). The phloem, a miracle of ingenuity. Plant, Cell and Environment 26, 125-149.
Vilaine, F., Palauqui, J.-C., Amselem, J., Kusiak, C., Lemoine, R., and Dinant, S. (2003). Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J. 36, 67-81.
Wierzbicki, A.T., Haag, J.R., and Pikaard, C.S. (2008). Noncoding transcription by RNA polymerase Pol IVb/Pol mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635-648.
Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056-1059.
Xie, Z., Ruas, P., and Shen, Q.J. (2005). Regulatory networks of the phytohormone abscisic acid. Vitamins and Hormones 72, 235-269.
Xoconostle-Cazares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H.L., Monzer, J., Yoo, B.C., McFarland, K.C., Franceshi, V.R., and Lucas, W.J. (1999). Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283, 94-98
Yoo, B.C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y.M., Lough, T.J., and Lucas, W.J. (2004). A systemic small RNA signaling system in plants. Plant Cell 16, 1979-2000.
Yu, H., Xu, Y., Tan, E.L., and Kumar, P.P. (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc. Natl. Acad. Sci. USA 99, 16336-16341.
Zeevaart, J.A. (2008). Leaf-produced floral signals. Curr. Opin. Plant Biol. 11, 1-7.
Zhao, C., Craig, J.C., Petzold, H.E., Dickerman, A.W., and Beers, E.P. (2005). The xylem and phloem transcriptomes form secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol. 138, 803-818.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top