跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃博辰
研究生(外文):Po-Chen Huang
論文名稱:矽烷偶合劑在有機-無機或無機-無機材質界面間之接著性研究
論文名稱(外文):The study of adhesiveness promotion between organic and inorganic material or between inorganic and inorganic material by using silane coupling agent
指導教授:廖文城廖文城引用關係張文雄張文雄引用關係
指導教授(外文):Wen-Cheng LiawWen-Shion Chang
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:化學工程博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:284
中文關鍵詞:矽烷偶合劑奈米複合材料聚丙烯蒙脫土有機材料四乙氧基矽改質玻璃纖維布大氣電漿聚四氟乙烯無電電鍍法核-殼結構高分子微球
外文關鍵詞:ClaySubmicron Polymer SphereModifiedTetraethoxy SilanePlasmaElectroless PlatingCore-Shell StructurePolypropylene(PP)NanocompositesSilane Coupling AgentOrganic MaterialsPolyterafluoroethylene(PTFE)Glass Fiber Cloth(GFC)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:3000
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用不同的矽烷偶合劑,在有機-無機或無機-無機材質間進行界面的改質,進而增加材料之間的相容性及接著性,研究分四個部份做深入討論,分別探討各材料之製作及鑑定:
第一部份中,研究利用矽烷偶合劑(γ-(aminopropyl) triethoxy silane (APTS)改質PPgMA,並製備成PP/Clay奈米複合材料,改變PPgMA不同的比例進行APTS的改質,將已改質好的PPgMA與有機的PP進行混合不同的配比,得到不同的PP/Clay奈米混成複合材料,研究中發現當有機Clay含量為5wt%時,會形成插-脫層奈米複合材料結構,而且在熱裂解溫度可達到484℃,比純的PP(386℃)高,以及在拉伸強度可提升30%,楊式模數可提升57%,所以研究所製備出的PPgMA/APTS組成能夠提供PP/Clay奈米複合材料有更好的性能。
第二部份中,研究利用3-trimethoxysilyl propryl methacrylate)來改質高分子微球(直徑168-650nm)表面,以利橋接高分子核及金屬殼。其高分子微球是利用polystyrene與divinylbenzene進行交聯,製成基材核結構,再由金屬在外包覆做為殼結構,其中,高分子微球是利用在氫氧化鈉溶液中進行無乳化劑乳化聚合法所製備的,而利用無電電鍍鎳技術將金屬被覆於高分子表面,利用矽烷偶合劑與羧基團(COOH)在核殼結構界面間之影響,進行比較相關的熱性質、機械性質及電性質。研究所利用FESEM觀察矽烷偶合劑更能夠增強金屬與高分子微球之間的鍵結,而在球磨試驗中,矽的鍵結在鎳與高分子間,能夠提供比羧基團提供更佳的耐磨性,並從相關的鑑定中判定該鍵結的優異性。
第三部份中,研究利用大氣電漿改質polyterafluoroethylene(PTFE)表面,分別用氦氣與氬氣、不同的電漿功率、不同的捲取速率來研究並量測PTFE表面的接觸角,研究發現最佳的條件是在氬氣時,功率1.3kW及2 m/min的捲取速率,並利用FTIR-ATR分析出在3476cm-1其含有OH官能基的存在,也利用XPS分析PTFE表面含氧的比率,研究中,利用三種矽烷偶合劑來進行玻璃纖維布表面的改質,其分別是benzylaminoethyl-3-aminopropyltrimethoxysilane hydrochloride oligomer (A1128),n-[2-Vinylbenzyl]-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride oligomer (KBM974),及3-trimethoxysilyl propryl methacrylate (KBM503),研究利用兩系列的膠合劑(N及J),比較在不同電漿處理的PTFE及不同矽烷偶合劑改質的玻璃纖維布之間的接著效果,發現在1%的KBM503使用下效果最好,而研究中所得的PTFE/GFC複合材料在N系列的膠合劑下,剝離強度可以達到0.712MPa,百格試驗可達到95%,比兩者表面未處理貼合的複合材料,有更佳的性質。
第四部份中,研究利用Tetraethoxy silane來進行玻璃纖維表面的官能基化,並利用無電鍍技術將銀被覆於表面,比較經改質與未經改質的玻璃纖維在機械性質與電性質的差異,研究可以發現矽的鍵結可以提供在無電鍍銀下,與金屬銀之間的穩定性,並利用FESEM、XRD、EDX、MM及電阻計量測。經過TEOS改質後的玻璃纖維在無電鍍銀後,與未經改質的玻璃纖維,在球磨試驗下,有較好的電阻值與殘銀量,在Ag-Si-FG-3-c的配方下,可以得到最低的電阻值1.56 × 103 Ω/cm2及最佳的機械性質。
以上四部份,其共通的特色即是利用矽烷偶合劑來進行有機或無機表面的改質,藉由不同的基材,依照其基材的官能基,選用適合的矽烷偶合劑,可以促使材料能夠與其他有機或無機之間的接著性能提升,達到極具有附加價值複合材料。
In this study, different silane coupling reagents have been used to improve the compatibility and stickability between organic - inorganic materials, and inorganic – inorganic materials by modifying their surface. There are four parts in this research. Each part has investigated the preparation, property, and conformation for the special material as described in the following:
The first part:
A compound coupling compatibilizer employing coupled use of γ-(aminopropyl) triethoxy silane (APTS) and maleic anhydride-graft-polypropylene (PPgMA) was synthesized for the preparation of polypropylene (PP)/clay hybrid nanocomposites. Various PPgMA to APTS ratios of these compound coupling compatibilizers were first reacted with clay to form PPgMA/clay masterbatches. The obtained masterbatches were then compounded with PP to produce PP/clay hybrid nanocomposites possessing different characteristics. The composition effects were studied. For org-clay content of 5 wt %, intercalated-exfoliated structure of the nanocomposite could be maintained for better reinforcement. Td of 484°C was achieved, indicating significant improvement over neat PP (Td was 386°C) in thermal property. The ultimate tensile strength (30% higher than control) and Young’s modulus (57% higher than control) measurements also justified the application of the PPgMA/APTS compound coupling compatibilizer in the incorporation of org-clay in PP matrix. The use of the PPgMA/APTS compound coupling compatibilizer can provide design flexibility in manufacturing PP/clay hybrid nanocomposites.
The second part:
The silane coupling agent (3-trimethoxysilyl propryl methacrylate) was used to functionalize the surface of submicron polymer spheres (diameter 168–650 nm) for bridging the polymer core (polystyrene crosslinked with divinylbenzene) and the metal coating shell. The submicron polymer spheres were synthesized by emulsifier-free emulsion polymerization in the presence of NaOH. The metal shell was created by electroless plating. The performance of silane coupling agent, as the bondage between the core and the shell, was compared to that of polymer spheres functionalized with -COOH groups in terms of thermal, mechanical and electrical properties. The silane bridge provided more opportunities for binding with metal and the bondage is stable, leading to a denser and more uniform distribution of metal coating, as observed by FESEM studies. The silane bridge was proven to be more durable than that in the case of -COOH in the ball milling tests.
The Third part:
In this study, the atmospheric plasma has been used to modify the surface of polyterafluoroethylene (PTFE). Helium (He) and argon (Ar), different plasma powers, and different rolling rates were investigated by measuring the contact angle. The optimizing conditions are: Ar gas, 1.3 kW power, and 2 m/min rolling rate. The functional group OH was observed at the peak of 3,476 cm−1 in Attenuated total reflection-Fouriertransform infrared spectrometry (FTIR-ATR). The PTFE has contained oxygen after surface modification and has been proofed by X-ray photoelectron Spectra (XPS). Three silanes have been used to modify the surface of
glass fiber cloth (GFC). These silanes are benzylaminoethyl-3-amino-propyltrimethox
ysilane hydrochloride oligomer (A1128), n-[2-Vinylbenzyl]-2-aminoethyl-3-amino-
propyltrimethoxysilane hydrochloride oligomer (KBM974), and 3-trimethoxysilyl proprylmethacrylate (KBM503). Different concentrations of silanes and dipping methods were studied. It is better for GFC to stick with glue by using 1% KBM503. Two glue series of N and J were used to adhere the modified PTFE and GFC by using UV curing. The PTFE/GFC composite formed by using N series has the strip strength of 0.712 MPa, and the hundred square strength of 95%. The result is about 5 times better comparing with the unmodified PTFE/GFC.
The Fourth part:
Tetraethoxy silane was used to functionalize the surface of fiber glass (FG) for adsorption with the electroless plated silver shell. The performance of electroless silver plated FG with tetraethoxy silane modification was compared to that of unmodified FG in terms of mechanical and electrical properties. The silane bridge provided more stability for binding with different concentrations of electroless plating silver ions. The characterization was investigated by using field emission scanning electron microscope (FESEM), X-ray diffraction patterns (XRD), energy-dispersion X-ray (EDX), metal microscope (MM) and electric resistance. The Ag coating on TEOS modified FG was more durable than that of unmodified FG in the ball milling test, as confirmed by the data of electric resistance and residue weight. The optimized conditions for producing the Ag coating FG were also investigated. The Ag–Si–FG-3-c product in this study has the lowest electrical resistance of 1.56 × 103 Ω/cm2 and good mechanical stability as exhibited in ball milling tests.
中文摘要 -------------------------Ⅰ
英文摘要 ------------------------III
誌謝 ------------------------------- VI
目錄 ------------------------------- VII
表目錄 ------------------------------- XI
圖目錄 ----------------------------- XII
一、 緒論--------------------------- 1
1.1 前言------------------- 1
1.2 蒙脫土的介紹與原理------------------- 4
1.2.1 蒙脫石之晶格結構與膠體性質------------ 4
1.2.2 蒙脫土的表面改質---------------------- 6
1.2.3 蒙脫土混摻高分子之複合材料分散型態------------- 12
1.3 高分子微球的製備原理及理論依據------------- 13
1.3.1 乳化聚合法的原理------------------------ 13
1.3.2 乳化聚合反應之成核機構--------------------- 21
1.3.3 無乳化劑乳化聚合法-------------------------- 26
1.4 鐵氟龍材料的介紹與原理------------------ 30
1.4.1 鐵氟龍材料的介紹---------------------------- 30
1.4.2 鐵氟龍薄膜製程簡介---------------------------- 34
1.4.3 鐵氟龍的應用---------------------------------- 36
1.5 玻璃纖維的介紹與原理--------------------- 37
1.5.1 玻璃纖維的介紹--------------------------------- 37
1.5.2 玻璃纖維之表面處理---------------------------- 45
1.5.3 玻璃纖維之加工方法--------------------------- 48
1.5.4 玻璃纖維之未來發展趨勢及用途--------------- 53
1.6 無電電鍍-------------------------------------- 54
1.6.1 鍍液組成及功能-------------------------------- 55
1.6.2 無電電鍍金屬---------------------------------- 58
1.6.3 敏化及活化處理-------------------------------- 61
1.7 大氣電漿的介紹與原理-------------------------- 62
1.7.1 電漿具備的特性--------------------------------- 63
1.7.2 電漿碰撞機制----------------------------------- 65
1.7.3 大氣電漿---------------------------------- 67
1.7.4 電漿之表面改質------------------------------ 69
1.8. 矽烷偶合劑的介紹與原理--------------------- 72
1.8.1 矽烷偶合劑的定義---------------------------- 72
1.8.2 矽烷偶合劑之使用方法------------------------- 78
1.8.3 矽偶合劑在無機物表面上的應用------------------- 82
1.8.4 矽烷偶合劑與無機物界面之結合原理------------- 84
1.8.5 矽烷偶合劑與有機物界面之結合原理-------------- 86
1.9 複合材料的介紹與理論------------------------ 87
1.9.1 複合材料的定義------------------------------ 87
1.9.2 有機-無機高分子複合材料--------------------- 89
1.10 參考文獻-------------------------------- 91
二、 聚丙烯與蒙脫土奈米複合材料之改質研究與探討------- 94
2.1 前言--------------------------------------------- 94
2.2 文獻回顧--------------------------------------------- 96
2.3 研究動機-----------------------------------------------100
2.4 實驗方法-----------------------------------------------101
2.4.1 實驗藥品-------------------------------------- 101
2.4.2 實驗設備-------------------------------------- 102
2.5 實驗步驟----------------------------------------- 103
2.5.1 有機蒙脫土之製備------------------------- 103
2.5.2 溶液法製備改質PPgMA/蒙脫土------------------- 103
2.5.3 溶液法製備聚丙烯/蒙脫土奈米複合材料--------- 103
2.6 結果與討論--------------------------------------- 104
2.6.1 FTIR分析--------------------------------- 106
2.6.2 XRD分析------------------------------------ 108
2.6.3 熱分析----------------------------------------- 110
2.6.4 Dynamic mechanical analyzer (DMA)性質分析------ 113
2.6.5 機械性質分析------------------------------ 115
2.7 結論-------------------------------------------- 117
2.8 參考文獻------------------------------------------ 119
三、 高分子微球與金屬鎳之製備及接著力探討--------------- 122
3.1 前言-------------------------------------------------- 122
3.2 文獻回顧----------------------------------------------- 124
3.3 研究動機---------------------------------------------- 127
3.4 實驗方法-------------------------------------- 128
3.4.1 實驗藥品----------------------------------------128
3.4.2 實驗設備------------------------------------------ 129
3.5 實驗步驟----------------------------------------------- 130
3.5.1 P(St-DVB-AA/MAA/TSPM) 共聚合高分子的製備------- 130
3.5.2 無電電鍍鎳於高分子微球的製備------------------- 132
3.6 結果與討論-------------------------------------------- 134
3.6.1 不同單體含量對無乳化劑乳化聚合的影響----------- 137
3.6.2 紅外光譜儀(FTIR)分析--------------------------- 139
3.6.3 X光繞射分析儀(X-ray Diffractometer)分析------- 141
3.6.4 EDX分析---------------------------------------- 141
3.6.5 FESEM分析鍍鎳後的高分子微球表面形態------------ 144
3.6.6 TEM分析無電電鍍鎳液濃度對金屬層厚度之影響------ 146
3.6.7 TGA分析鍍鎳前後高分子微球--------------------- 148
3.6.8 共聚合高分子鍍鎳後於機械耐磨性的FESEM分析------ 151
3.6.9 無電電鍍鎳高分子微球對導電度的影響----------- 153
3.7 結論------------------------------------------------- 158
3.8 參考文獻----------------------------------------------- 160
四、 鐵氟龍薄膜與玻璃纖維布複合材料之界面改質製備及研究-- 164
4.1 前言-------------------------------------------------- 164
4.2 文獻回顧-------------------------------------------- 166
4.3 研究動機--------------------------------------------- 170
4.4 實驗方法---------------------------------------------- 171
4.4.1 實驗藥品--------------------------------------- 171
4.4.2 實驗設備--------------------------------------- 172
4.5 實驗步驟---------------------------------------- 173
4.5.1 Silane改質玻璃纖維布-------------------------- 173
4.5.2 PTFE/GFC composite之製備--------------------- 174
4.6 結果與討論------------------------------------------ 176
4.6.1 大氣電漿處理PTFE之接觸角分析----------------- 177
4.6.2 ATR-IR分析---------------------------------- 180
4.6.3 XPS分析-------------------------------------- 182
4.6.4 剝離強度和百格試驗分析---------------------- 185
4.6.5 MM及SEM分析-------------------------------- 188
4.7 結論--------------------------------------------- 191
4.8 參考文獻----------------------------------------------- 193
五、 玻璃纖維與金屬銀的複合材料之製備與接著力研究----------- 195
5.1 前言------------------------------------------------- 195
5.2 文獻回顧--------------------------------------------- 197
5.3 研究動機-------------------------------------------- 198
5.4 實驗方法---------------------------------------------- 199
5.4.1 實驗材料及藥品--------------------------------- 200
5.4.2 實驗設備--------------------------------------- 201
5.5 實驗步驟---------------------------------------- 202
5.5.1 玻璃纖維前處理----------------------------- 202
5.5.2 TEOS濃度的配置----------------------------- 203
5.5.3 無電電鍍銀於玻璃纖維之製備--------------------- 204
5.6 結果與討論-------------------------------------------- 206
5.6.1 TEOS改質玻璃纖維之FESEM分析----------------- 206
5.6.2 玻璃纖維表面無電鍍銀之FESEM分析-------------- 209
5.6.3 EDX分析------------------------------------- 211
5.6.4 玻璃纖維鍍銀後之XRD分析--------------------- 213
5.6.5 玻璃纖維鍍銀後之電阻分析-------------------- 215
5.6.6 玻璃纖維鍍銀經球磨試驗後之FESEM分析------------ 217
5.6.7 玻璃纖維鍍銀經球磨試驗後之金相分析------------- 220
5.6.8 玻璃纖維鍍銀經球磨試驗後之殘重試驗----------- 222
5.6.9 球磨試驗後的玻璃纖維鍍銀之電阻分析------------ 224
5.7 結論-------------------------------------------- 226
5.8 參考文獻---------------------------------------------- 228
六、 總結論------------------------------------------ 230
七、 發表國際期刊著作---------------------------------- 232
附錄一、PPgMA/APTS Compound Coupling Compatabilizer in PP/Clay Hybrid Nanocomposite-------------------------------------------------------------233
附錄二、 Silane-Bridged Electroless Ni-Plating on Submicron Polymer Spheres-------------------------------------------------------------------243
附錄三、 Preparation of glass fiber clothes reinforced polytetrafluoroethylene film composites using plasma for polytetrafluoroethylene surface modification------------------------------252
附錄四、 Electroless silver plating on tetraethoxy silane-bridged fiber glass---------------------------------------------------------------------260
[1] 徐國財、張立德,2002,“納米複合材料”,化學工業出版社,1卷,206期.
[2] 陳國華、李明春、姚康德,2002,“聚合物/蒙脫土奈米複合體系”,奈米塑料,42卷.
[3] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Intro. Ceram., John Wiley: New York, 1975.
[4] B. K. G. Theng, 1974, “The Chemistry of Clay-Organic reactions”, Adam Hilger: Bristol.
[5] J. Pinnavaia, Science, 220, 365. 1983.
[6] T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 6, 573, 1994.
[7] A. Akelah and A. Moet, J. App. Polym. Sci., App. Polym. Sym., 55, 153, 1994.
[8] C. Zilg, R. Thomann, and R. Miilhaupt, J. Adv. Mater., 11, 49, 1999.
[9] P. C. LeBaron, Z. S. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11, 1999.
[10] J. W. Gilman, Appl. Clay Sci., 15, 31, 1999.
[11] R. Arshady, Colloids and Polymer Sci., 270, 717, 1992.
[12] R. Arshady, J. Microencapsulation, 5, 2, 101, 1998.
[13]蔡信行,1981,“聚合物化學”,文京圖書有限公司,台北。
[14]溫家貞,2001,”聚氮-異丙基丙烯醯胺與幾丁聚醣共聚乳膠顆粒之合成及其在藥物釋放上的應用”,台大材料所,碩士論文。
[15]杜逸虹著,2003,”聚合體學(高分子化學)”,十七版,三民書局,台北。
[16]林建中編著,2000,”高分子化學原理”,十一版,歐亞書局有限公司,台北。
[17]耿耀宗,曹同玉,1999,“合成聚合物乳液製造與應用技術”,中國輕工業出版社,北京。
[18]鄭忠,胡紀準,1995,“表面活性劑的物理化學原理”,華南理工
大學出版社,廣州。
[19] P. A. Winsor, 1954, “ Solvent Properties of Amphiphilic Compounds”, London.
[20] D. Langevin, Accounts of Chem. Research., 21, 255, 1988.
[21] W. D. Harkins, J. Polym. Sci., 5, 217, 1950.
[22] W. V. Smith, J. Am. Chem. Soc., 70, 3695, 1948.
[23] W. D. Harkins, J. Chem. Phys., 14, 47, 1946.
[24] W. V. Smith, and R. W. Ewart, J. Chem. Phys., 16, 592, 1948.
[25] B. Jacobi, Angew. Chem., 64, 539, 1952.
[26] W. J. Priest, J. Phys. Chem., 56, 1077, 1952.
[27] R. M. Fitch, and L. B. Shih, Prog. Colloid Polym. Sci., 56, 1, 1975.
[28] J. Delgado, M. S. El-Aasser, C. A. Silebi, J. W. Vanderhoff, and J. Guillot, J. Polym. Sci., Part B﹕Polym. Phys., 26, 1495, 1988.
[29] G. Lichti, R. G. Gilbert and D. H. Napper, J. Polym. Sci., Polym. Chem. Ed., 21, 269, 1983.
[30] 鄭琇毓、李宜純、林志宏、江彰吉,2002,“利用無乳化乳化聚合反應合成Ps 與PMMA/Clay 之奈米複合材料“,國科會計劃,中原大學。
[31] J. W. Vanderhoff, J. Polym.Sci., Polym. Symp., 72, 161, 1985.
[32] F. K. Hansen, and J. Ugelstad, J. Polym. Sci., Polym. Chem. Ed., 17, 3033, 1979.
[33] 朱世雄、杜金環、金熹高、陳柳生,1998,“無乳化劑乳液聚合法合成單分散大粒徑高分子微球的研究”,高分子學報,1卷,1期,1月.
[34] Gu A, Liang G, and Yuan L, Polym Adv Technol, 20, 39, 2009.
[35] Khedkar J, Negulescu I, and Meletis EI, Wear, 252, 361, 2002.
[36] 曾勝群,1992,”利用丙烯酸電漿聚合法對雙軸延伸PTFE表面改質之研究”,私立中原大學機械工程學系碩士論文.
[37] 蔡宏斌,1992,“氟碳聚合體(1):PTFE”,科儀新知,14卷,4期,8月.
[38] 蔡宏斌,1993,“氟碳聚合體(2):PVDF及PVF”,科儀新知,14卷,4期,2月.
[39] 蔡宏斌,1993,“氟碳聚合體(3):ETFE,PCTFE and ectfe”,科儀新知,14卷,5期,4月.
[40] 蔡宏斌,1993,“氟碳聚合體(4):EFP及PFA”,科儀新知,14卷,6期,5月.
[41] 里川孝臣著,“氟素塑膠”,台灣文源出版,2卷,3期.
[42] 許評順,1994,”高分子PTFE押出流變特性量測系統之建立”,私立中原大學機械工程學系碩士論文.
[43] 張志純譯,1994,“玻璃纖維及超級塑鋼大全”,台北市,徐氏基金會.
[44] 張志純,1994,“玻璃纖維強化塑膠之應用”,台北市,徐氏基金會.
[45] N. Henry, J. Marsh, L. Lawrence, and J. Clack, ACI Publication SP, 44, 247, 1974.
[46] 張耀明、李巨白、姜肇中,2001,“玻璃纖維與礦物棉全冊”,化學工業出版社,262頁.
[47] 顧宜,2002,“複合材料”,新文京開發出版股份有限公司.
[48] R.M. Gresham, 1988, ”EMI/RFI Shielding of Plastics”, Plat. and Sur. Fin., pp.63-69, February.
[49] Ding X. B., Sun Z. H., Wan G. X., and Jiang Y. Y., Reactive & Functional Polymers, 38, 11, 1998.
[50] P.H. Wang, and Pan C.Y., J.Polym Sci., 75, 1693, 2000.
[51] 何正昌,2003,”常壓電漿技術之研究”,國立成功大學化學工程研究所碩士論文.
[52] 曾煥華,1987,”電漿的世界”,第一章,銀禾文化有限公司,台北台灣.
[53] 何政昌,2003,”常壓電將技術之研究”,國立成功大學化學工程研究所碩士論文.
[54] 游錫揚,1997,”纖維複合材料”,國彰出版社,台北
[55] Edwin P.Plueddemann, 1982, “Silane Coupling Agents”, Plenum Publishing Corporation.
[56] 張耀明、李巨白、姜肇中,2001 ,“玻璃纖維與礦物棉全冊”,化學工業出版社,頁262~264.
[57] 周寧琳,2000, “有機矽聚合物導論”,科學出版社,頁168~178.
[58] E.P. Pluedde,”Society of Plastics Industry”, 25th Annual Tech.
[59]C. Huang, W. Mo, and M. Roan, Surf. Coat. Technol., 184, 123, 2004.
[60]T.Wang, G. Chen, C. Wu, and D. Wu, Org. Coat., 59, 101, 2007.
[61] 許明發、高文雄,1998,”複合材料”,高立圖書館有限公司.
[62] Y. Shirai, and N. Tsubokawa, Reactive & Functional Polymers, 32, 153, 1997.
[63] S. Hayashi, Y. Takeuchi, M. Eguchi, T. Iida, and N. Tsubokawa, J. Appl. Polym Sci, 71, 1491, 1999.
[64] A. Hayashi, K. Fujiki, and N. Tsubokawa, Reactive & Functional Polymers, 46, 193, 2000.
[65] S. Yano, K. Iwata, and K. Kurita, Mater. Sci. Eng., 6, 75, 1998.
[66] K. A. Mauritz, Materials Science and Engineering C, 6, 121, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top