跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳順和
研究生(外文):chen, shun-ho
論文名稱:網印、噴印及膠印應用於台灣工業級矽太陽電池生產之評估
論文名稱(外文):Evaluation of screen printing,ink-jet printing and offset printing to Taiwan's industrial production for silicon solar cells application
指導教授:馬哲申陳慶盈
指導教授(外文):Maa, Jer-ShenChen, Chin-Yin
口試委員:謝建文歐俊堯
口試委員(外文):Hsieh, Chien-WenOu, Chun-Yao
口試日期:2016-06-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電科技學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:太陽電池網版印刷噴墨印刷膠版印刷
外文關鍵詞:solar cellinkjet printingscreen printingoffset printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今世界各國極力發展太陽能發電,國內的再生能源法也在立法中,太陽電池產業極具發展性,目前國內機械設備製造廠的研發製造能力要製造太陽電池印刷製程設備是可行的,國內所製造的機械設備在品質、性能上是不輸國外製造廠,唯一只需解決的是整合的問題,因為目前所看到的國產自動化製程設備在系統整合這塊做的不是很理想,這部分仍須國內機械設備製造廠再投入更多的人力物力去解決。
設備的好壞與生產製程息息相關,因此評估網版印刷、噴墨印刷、膠版印刷技術在工業太陽電池生產上更顯重要。
以網版印刷、噴墨印刷、膠版印刷應用在矽太陽電池印刷製程上的分析得到下列結果:
1.以生產良率的觀點來討論,網版印刷、噴墨印刷及膠版印刷都可達到所需的良率。
2.太陽電池電極導線印刷線寬如果要降至40μm以下則只有噴墨印刷及膠版印刷適合。
3.以製程速度觀點來討論,網版印刷與噴墨印刷速度比膠版印刷慢。
4.以印刷製程中導電材料塗佈方式來討論導電材料的耗費,網版印刷的導電材料耗費比噴墨印刷、膠版印刷來的高。
5.膠版印刷擁有高生產良率、有較低製程成本、印刷線寬能達20~35μm、印刷速度極快達22.01m/s,為最適合於太陽電池電極導線印刷技術。因此要考慮線寬、製程速度、製程成本,膠版印刷較佔優勢。
面對未來太陽電池需求大增,太陽電池製造廠在擴充生產線時可將膠版印刷列入考量,而現有的網版印刷設備可以以最少經費透過設備的升級、更改印刷機構轉變成網版膠版印刷,屆時將可以更快的速度生產出品質、良率更高的太陽電池。

Currently there is a world wide effort to develop solar generated electrical power . In our country , the renewable energy law is at the legislation stage . The research and development as well as the capability of domestic equipment mechanical manufacturing plants for solar cell printing process are quite mature . In general , the qualities of equipment manufactured domestically are not inferior to that of imported equipment . The main weakness is in the system integration of the by domestically made automated tools. This area still requires dedicated effort of mechanical manufacturing companion.
There for it is essential to equipment the screen printing , offset printing , and inkjet printing technology for solar cell application.
The results of our analyse of screen printing , inkjet printing and offset printing of silicon solar cell printing process are as follow:
1.From the angle of production yield , all three printing technology can reach the reguired yield.
2.To reach a line width 40μm or less in the printing of conduction line only inkjet printing and offset printing can reach the goal .
3.In terms of production throughput , the order is offset printing , screen printing and inkjet printing . Production cost is closely related to production throughput.
4.In the material consumption of conductive parte , from the highest consumption the order is screen printing , offset printing and inkjet printing.
5.Offset printing has high product yield , lower product cost , and the capability to print line are close to 20~35μm . Its high production speed can reach 22.01m/s , it is the most suitable printing technology for current future linewidth requirement . To consider product throughput , and production cost , only offset printing surely to for all to meet the goal .
For the increased demand of solar cells in the near future . it is essential to consider offset printing are an option when there is need of the expansion of the production line . It is advised to upgrade the current screen printing tools by considering the more offset printing technology .

摘要...........................................I
ABSTRACT......................................II
誌謝...........................................IV
目錄...........................................V
表目錄.........................................VIII
圖目錄.........................................IX
第一章 緒論
1.1. 前言與研究目的........................01
1.2. 太陽電池發電原理......................03
1.3. 太陽電池分類..........................05
1.4. 矽太陽電池製程簡介.....................08
1.5. 矽太陽電池電極介紹.....................10
1.5.1. 正面電極(Front Side contacts)導線..10
1.5.2. 背面電極(Back Side contacts)......11
1.6. 烘烤製程..............................13
1.6.1. 燒結(Sintering)...................13
1.6.2. 電極燒結(Co-Firing)................14
1.7. 電極導線印刷方式........................14
第二章 網版印刷
2.1. 簡介.................................18
2.2. 製程與製程參數.........................18
2.2.1. 乳劑(emulsion)....................20
2.2.2. 網目(stencil).....................21
2.2.3. 橡皮刮刀(Squeegee).................22
2.3. 銀膠(Silver conductive paste).......23
2.3.1. 導電粒子............................23
2.3.2. 粒徑................................23
2.3.3. 顆粒形狀.............................23
2.3.4. 黏著劑(Resin)......................24
2.3.5. 溶劑(Solvent)......................24
2.3.6. 助劑(Accelarator)..................24
2.4. 烘烤製程...............................24
2.4.1. 烘乾(Drying).......................24
2.4.2. 燒結(Sintering)....................25
2.4.3. 基板溫度.............................26
2.5. 印刷壓力...............................26
2.6. 速度..................................27
2.7. 分辨率與線寬............................27
2.7.1. 定義.................................27
2.7.2. 印刷分辨率與線寬.......................28
2.8. 導電性與電阻性...........................29
2.9. 特性與優勢..............................30
第三章 噴墨印刷
3.1. 簡介...................................31
3.1.1. 連續式(Continuous)..................32
3.1.2. 供需式(Drop-on-demand)..............33
3.1.3. 比較.................................37
3.2. 印刷參數................................38
3.3. 導電墨水................................39
3.4. 墨水參數................................39
3.5. 速度與壓電驅動信號........................40
3.6. 咖啡環(coffee-ring or donut)效應.......43
3.7. 導電性與電阻性...........................45
3.8. 分辨率與線寬.............................46
3.9. 特性與優勢...............................46
3.10. 應用....................................47
第四章 膠版印刷
4.1. 簡介....................................48
4.2. 印刷方式.................................49
4.2.1. 凸版印刷(Toppan printing)方式.........49
4.2.2. 凹版印刷(Gravure printing)方式........50
4.2.3. 網版膠版(Screen-Offset printing)印刷..52
4.3. 導電油墨.................................56
4.4. 製程參數.................................56
4.5. 分辨率與線寬..............................57
4.6. 導電性與電阻性.............................57
4.7. 速度與成本................................57
4.8. 特性與優勢................................57
4.9. 應用.....................................58
第五章 印刷技術應用於大量生產太陽電池之分析
5.1. 印刷生產設備分析...........................59
5.1.1. 自製設備的重要性.........................59
5.1.2. 設備改良與研發方向.......................63
5.2. 設備與產品的關係...........................64
5.3. 國內太陽電池印刷設備技術發展swot分析..........65
5.4. 三種印刷技術比較及瓶頸分析與效益評估...........66
5.4.1. 三種印刷技術比較..........................66
5.4.2. 瓶頸分析與未來發展........................68
5.4.3. 效益評估................................68
5.5.膠版印刷技術的優勢..............................69
5.6. 膠版印刷在太陽電池產業未來的發展..............69
第六章 結論........................................70
參考文獻.............................................71

1.楊賜麟 譯,「半導體物理與元件」,滄海書局,2012。
2.楊德仁 編著,顏怡文 校正,「太陽電池材料」,五南書局,2009。
3.李正中等,「光電科技概論」五南書局,2010。
4.摘錄自NREL公司網站
http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
5.蔡進譯,「超高效率太陽電池-從愛因斯坦的光電效應談起」,物理雙月刊,廿七卷五期,2005。
6.S. R.Wenham,M. A.Green , M. E.watt , R. Corkish“Applied photovoltaics” , earthscan , 2007 .
7.摘錄自IFE公司網站
http://www.ife.no/main_subjects_new/energy_environment
8.C. Honsberg , S. Bowden.“Photovoltaics CDROM” , University of Delaware , USA . http://www.pveducation.org/pvcdrom .
9.W. Shockley , H. J. Queisser , “Detailed balance limit on efficiency of p-n junction solar cells” , Applied physics , P510~519 , 1991 .
10.T. Tiedje , E. Yablonovitch , G. D. Cody , B. G. Brooks , “Limiting efficiency of silicon solar cells” , IEEE Transactions on electron devices , P711~716 , 1984 .
11. P. Campbell , M. A. Green , “The limiting efficiency of the silicon solar cells under concentrated sunlight” , IEEE Transactions on electron devices , P234~239 , 1986 .
12.M. A. Green , “Limits on the open circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process” , IEEE Transactions on electron devices , P671~678 , 1984 .
13.摘錄自恒基公司網站
http://www.hanky.com.tw/electric-flat-screen-printing.html
14.摘錄自恒基公司網站
http://www.hanky.com.tw/silicon-wafer-solar-cell.html
15.摘錄自訊可科技公司網站
http://www.inksun.com.tw/product_573063.html
16.摘錄自慧聰印刷網
http://info.printing.hc360.com/2013/11/221351516134.shtml
17.摘錄自亞洲機械網
http://tw.asiamachinery.net/supplier/product_details.asp?ProID=3050&SupID=4099
18.F. C. Krebs , “Fabrication and processing of polymer solar cells-A review of printing and coating techniques” , Solar energy materials and solar cells , P394~412 , 2009 .
19.H. Morikawa , D. Niinobe , K. Nishimura , S. Matsuno , S. Arimoto , “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell” , current Applied physics , P210~214 , 2010 .
20.H. Hahn , Dresden (DE); M. Kutzer , Penig (DE); C. Koch , poehl (DE) , “Solar cell screen-printing composition , solar cell and method for manufacturing a metallization structure” , U.S. Patent 20130153020 , 2013 .
21.T.M. Lee , Y.J. Choi , S. Y. Nam , C.W. You , D. Y. Na , H. C. Choi , D. Y. Shin , K. Y. Kim , K. I. Jung , “Color filter patterned by screen printing” , Thin solid films , P7875~7880 , 2008 .
22.S. E. Shaheen , R. Radspinner , N. Peyghambarian , G. E. Jabbour , “Fabrication of bulk heterojunction plastic solar cells by screen printing” , Applied physics letters , P2996~2998 , 2001 .
23.M. Burgelman , “Thin film solar cells by screen printing technology” , Proceedings of the Workshop Microtechnology and Themal Problems in Electronics . The summer school.technical University of Lodz , P129~135 , 1998 .
24.S.C. Lee , C.K. Kim , H.E. Song , Y.S. Kim , “Finite element analysis of crystalline silicon solar cell in screen printing process by using taguchi method” , international journal of precision engineering and manufacturing , P635~642 , 2013 .
25.N. Espinosa , R. G.Valverde , A. Urbina , F. Lenzmann , M. Manceau , D. Angmo , F. C. Krebs , “Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing” , Solar energy materials and solar cells , P3~13 , 2012 .
26.D. Erath , A. Filipovic , M. Retzlaff , A. K. Goetz , F. Clement , D. Biro , Ralf Preu , “Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells” , Solar energy materials and solar cells , P57~61 , 2010 .
27.D. Erath , “Printing techniques in the c-Si PV industry - a brief technological overview” , International circular of graphic education and research , P8~15 , 2010 .
28.L. A. Dobrzański , M. Musztyfaga , W. Kwaśny , P. Panek , “ Structure and electrical properties of screen printed contacts on silicon solar cells” , Journal of Achievements in Materials and Manufacturing Engineering , P141~147 , 2011 .
29.太陽電池製造公司工業製程參數資料。
30.A. D. G. D. Mauro , R. Diana , I. A. Grimaldi , F. Loffredo , P. Morvillo , F. Villani , C. Minarini , “Polymer Solar cells with inkjet-printed doped-PEDOT:PSS anode” , Polymer composites , polymer composites , P1493~1499 , 2013 .
31.T. Kaydanova , M. F. A.M van Hest , A. Miedaner , C. J. Curtis , J. L. Alleman , M. S. Dabney , E. Garnett , S. Shaheen , L. Smith , R. Collins , J. I. Hanoka , A. M. Gabor , D. S. Ginley , “Direct write contacts for solar cells” , IEEE Photovoltaics specialists conference and exhibition , P3~7 , 2005 .
32.殷孟雲,「噴墨印表機設計原理」,全華圖書股份有限公司,2001。
33.B. Derby , “Inkjet printing of functional and structural materials: fluid property requirements , feature stability , and resolution” , Annual review of materials research , P395~414 , 2010 .
34.P.Krause , E. Obermerier , W. Wehl , “A micromachined single-Chip Inkjet Printhead” , Sensors and actuators A53 , P405~409 , 1996 .
35. J. L. Vaught , F. L. Cloutier , D. K. Donald , J. D. Meyer , C. A. Tacklind , H. H .Taub , (Hewlett-packard) , “Thermal Ink-jet printer” , U.S. Patent 4490728 , 1979 .
36.S. Kamisuki , T. Hagata , C. Tezuka , Y. Nose , M. Fujii , M. Atobe , “A low power , small , electrostatically-driven commerical inkjet head” , IEEE Conference Publications , P63~68 , 1998 .
37.C. J. Curtis , M. v. Hest , A. Miedaner , T. Kaydanova , L. Smith , D. S. Ginley “Multi-layer inkjet printed contacts for silicon solar cells” , Presented at the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion , P1~3 , 2006 .
38.J. Perelaer , C. E Hendriks , A. W M d. Laat , U. S Schubert , “One-step inkjet printing of conductive silver tracks on polymer substrates” , nanotechnology , P1~5 , 2009 .
39.H. Antoniadis , “ Silicon ink high efficiency solar cells” , Photovoltaic specialists conference , IEEE Photovoltaic Specialist Conference , P000650~000654 , 2009 .
40.B.J. d. Gans , U. S. Schubert , “Inkjet Printing of Polymer Micro-Arrays and Libraries:Instrumentation , Requirements, and Perspectives” , Macromolecular Rapid Communications , P659~666 , 2003 .
41.T. Kaydanova , A. Miedaner , C. Curtis , J. Perkins , J. Alleman , D. Ginley , “Inkjet printing approaches to solar cell contacts” , Presented at the national center for photovoltaics and solar program review meeting denver , P24~26 , 2003 .
42. X. Chen , K.Church , H.Yang , “High speed non-contact printing for solar cell frpnt side metallization” , IEEE Photovoltaic Specialists Conference (PVSC) , P001343~001347 , 2010 .
43.Y.T. Gizachew , L.Escoubas , J.J.Simon , M.Pasquinelli , J.Loiret , P.Y.Leguen , J.C.Jimeno , J. Martin , A.Apraiz , J.P.Aguerre , “Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells” , Solar Energy Materials & Solar Cells , PS70~S82 , 2011 .
44.S. Molesa , D. R. Redinger , D. C. Huang , V. Subramanian , “High-quality inkjet-printed multilevel interconnects and inductive components on plastic for ultra-low-cost RFID applications” , Materials Research Society , PH8.3.1~H8.3.6 , 2003 .
45.P. A. Hersh , C. J. Curtis , M. F.A.M. van Hest , J. J. Kreuder , R. Pasquarelli , A. Miedaner , D. S. Ginley , “Inkjet printed metallizations for Cu(In1_xGax)Se2 photovoltaic cells” , Progress in photovoltaics: research and applications , P973~976 , 2011 .
46.C. Curtis , T. Rivkin , A. Miedaner , J. Alleman , J. Perkins , L. Smith , D. Ginley , “Metallizations by Direct-Write Inkjet Printing” , Presented at the national Center for photovoltaics and solar program review meeting , P14~17 , 2001 .
47.E. Halonen , T. Viiru , K. Östman , A. L. Cabezas , M. Mäntysalo , “Oven Sintering Process Optimization for Inkjet-Printed Ag Nanoparticle Ink” , IEEE transactions on componets , packaging and manufacturing technology , P350~356 , 2013 .
48.D. Kim , S. Jeong , S. Lee , B. K. Park , J. Moon , “Organic thin film transistor using silver electrodes by the ink-jet printing technology” , Thin solid films , P7692~7696 , 2007 .
49.H. Kobayashi , S. Kanbe , S. Seki , H. Kigchi , M. Kimura , I. Yudasaka , S. Miyashita , T. Shimoda , C. R. Towns , J. H. Burroughes , R. H. Friend , “A novel RGB multicolor light-emitting polymer display” , Synthetic Metals , P125~128 , 2000 .
50.Y. Yoshioka , G. E. Jabbour , “Desktop inkjet printer as a tool to print conducting polymers” , Synthetic Metals , P779~783 , 2006 .
51.B. Chen , T. Cui , Y. Liu , K. Varahramyan , “All-polymer RC filter circuits fabricated with inkjet printing technology” , Solid-State Electronics , P841~847 , 2003 .
52.S. B. Fuller , E. J. Wilhelm , J. M Jacobson , “Ink-Jet Printed Nanoparticle Microelectromechanical Systems” , Journal of microelectromechanical systems , P54~60 , 2000 .
53.H. H. Lee , K. S. Chou , K. C. Huang , “Inkjet printing of nanosized silver colloids” , nanotechnology , P2436~2441 , 2005 .
54.S. H. Eoma , S. Senthilarasu , P. Uthirakumar , S. C. Yoon , J. L. c , C. Lee , H. S. Lim , J. Lee , S. H. Lee , ” Polymer solar cells based on inkjet-printed PEDOT:PSS layer” , Organic lectronics , P536~542 , 2009 .
55.摘錄自飛利浦公司網站
http://www.research.philips.com/technologies/index.html
56.T.M. Lee , H.S. Han , B. Kim , S.W. Kwak , J.H. Noh , I. Kim , “Roll offset printing process based on interface separation for fine and smooth patterning” , Thin Solid Films , P566~571 , 2013 .
57.S. Dilfer , N. Schmitt , “Printing conductive layers using waterless offset technology considering the influences of the low-viscosity polymer inks and the rubber blankets” , Journal of Coatings Technology and Research , P475~482 , 2012 .
58.D. Kang , H. Kim , E. Lee , S. Lee , Y.M. Choi , T.M. Lee , “ In-line measurement of velocity synchronization between contact surfaces in offset printing” , Presented at the 17th International Coating Science and Technology Symposium , 2014 .
59.M. G. Lopez , R. S. Akhanvalin , J. M. Pingel , D. F. Chiu , “Reducing print quality defects” , U.S. Patent 20140196623 A1 , 2014 .
60.摘錄自維基百科網站
https://en.wikipedia.org/wiki/Offset_printing
61.摘錄自名赫名片印刷公司網站
http://www.minghecard.com/article.php?id=48
62.A. Lorenz , A. Kalio,G. T. Hofmeister , S. Nold , L. Friedrich , A. Kraft , J. Bartsch , D. Wolf , M. Dreher , F. Clement , D. Biro , Fraunhofer , “Flexographic printing – high throughput technology for fine line seed layer printing on silicon solar cell” , European Photovoltaic Solar Energy Conference and Exhibition , 28th , P1017~1023 .
63.M. PUDAS , “Gravure-offset printing in the manufacture of ultra-fine-line thick-films for electronics” , The Academic Dissertation . University of Oulu,2004 .
64.S.H. Nam , S.S. Yoo , Y. G. Chang , N.K. Kim , Y. H. Kook , J. Kim , C.D. Kim , I. Kang , I. J. Chung , “43.4: enhancement of roll printing accuracy for TFT-LCD” , Wiley Online Library , P648~650 , 2008 .
65.K.I. Nomura , H. Ushijima , K. Nagase , H. Ikedo , R. Mitsui , S. Takahashi , S. I. Nakajima , S. Iwata , “Fine electrode pattern formation by screen-offset printing technique” , Electronics Packaging (ICEP) , 2014 International Conference on IEEE xplore , P275~278 , 2014 .
66.K. I. Nomura , H. Ushijima , R. Mitsui , S. Takahashi , S. I. Nakajima , “Screen-offset printing for fine conductive patterns” , Microelectronic Engineering , P58~61 , 2014 .
67.Y. Xia , A. Karwa , F. Sigg , D. M. Clark , B. E. Kahn , “Printed organic electronic devices made using high volume printing processes” , Materials Research Society , PA5.28.1~A5.28.3 , 2005 .
68.Y.G. Chang , S. H. Nam , N.K. Kim , Y.H. Kook , J. K. , S.S. Yoo , C.D. Kim , I. Kang , I. J. Chung , “43.1: distinguished paper: design parameters of roll printing process for TFT-LCD Fabrication” , Wiley Online Library , P637~640 , 2008 .
69.S. M. Miller , S. M. Troiana , “Photoresist-free printing of amorphous silicon thin-film transistors” , Applied physics letters , P3207~3209 , 2003 .
70.Y. Mikami , Y. Nagae , Y. Mori , K. Kuwabara , T. Saito , H. Hayama , H. Asada , Y. Akimoto , M. Kobayashi , S. Okazaki , K. Asaka , H. Matsui , K. Nakamura , E.i Kaneko , Member , “A new patterning process concept for large-area transistor circuit fabrication without using an optical mask aligner” , IEEE transactions on electron devices , P306~314 , 1994 .
71.D. Lee , I. Hwang , S. Yoon , S. Chun , J. Hwang , “Method for preparation of front electrode for solar cell of high efficiency” , U.S. Patent 8691620 B2 , 2010 .
72.J. W. Kim , G.do (KR) , “Printing plate and method of manufacturing liquid crystal display device using the same” , U.S. Patent 20070245915 A1 , 2007 .
73.S. S. Yoo , Y. G. Chang , S. H. Nam , N. K. KlIIl , “Roller apparatus , printing method and method of fabricating liquid crystal display device using the same ” , U.S. Patent 20080184904 A1 , 2008 .
74.J.H. Yi , D.H. Lee , “Printing system and method for fabricating a liquid crystal display device” , U.S. Patent 6835583 B2 , 2004 .
75.J. A , Chapman , “Method of fabricating a TFT device formed by printing” , U.S. Patent 7148090 B2 , 2006 .
76.H. S. Yoo , T. Y. Oh , “Printing device and method of coating a printing roll and fabricating a LCD device using the printing device” , U.S. Patent 7469639 B2 , 2008 .
77.Y.M. Choi , E.S. Lee , T.M. Lee , K.Y. Kim , “Optimization of a reverse-offset printing process and its application to a metal mesh touch screen sensor” , Microelectronic Engineering , P1~6 , 2015 .
78.A. Mette , “New Concepts for Front Side Metallization of Industrial Silicon Solar Cells” , The Academic Dissertation , University Freiburg , 2007 .
79.A. Lorenza , A. Senneb , J. Rohdec , S. Kroha , M. Wittenberga , K. Krügera , F. Clementa , D. Biroa , “Evaluation of Flexographic Printing Technology for Multi-Busbar Solar Cells” , Energy Procedia , P126~137 , 2015 .
80.摘錄自鴻勁科技網站
http://www.hontech.com.tw/products_detail.php?M=2&Key=6
81.摘錄自EPSON台灣分公司商品簡介
http://www.epson.com.tw/UpLoadFiles/public/download/ICHandler/ICHandler.pdf
82.交大光電實驗室
83. A. Ramamoorthy , K. R. Pelowski , E. R. Sirkin , “Method to create high efficiency , low cost polysilicon or microcrystalline solar cell on flexible substrates using multilayer high speed inkjet printing and, rapid annealing and light trapping” , U.S. Patent 20090242019 A1 , 2009 .

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top