1.陳陽益、湯麟武(1992),“平緩坡度底床上前進的表面波”,第十四屆海洋工程研討會論文集,1頁-22頁。
2.陳陽益(1994a),“等深水中非旋轉性的自由表面前進重力波之Lagrangian方式的攝動解析”,第十六屆海洋工程研討會論文集,A1頁-A29頁。
3.陳陽益(1994b),“等深水中非旋轉性的自由表面重力駐波之Lagrangian方式的攝動解析”,第十六屆海洋工程研討會論文集,A30頁-A59頁。4.陳陽益(1995),“Lagrangian 與 Eulerian 解下前進重力波與重力駐波的動力特性”,第十七屆海洋工程研討會論文集,19頁-36頁。5.陳陽益(1996),“非旋轉性前進波的 Eulerian 與 Lagrangian 解間的轉換性”,第十八屆海洋工程研討會論文集,1頁-13頁。
6.陳陽益(1997),“平緩坡度底床上前進的表面波”,第十九屆海洋工程研討會論文集,112頁-121頁。
7.陳陽益、張富東(1999),“平緩坡度底床上前進波的試驗研究”,第二十一屆海洋工程研討會論文集,165頁-174頁。
8.陳陽益、黃啟暘(2000),“Lagrangian方式下平緩底床上之前進波”,第二十二屆海洋工程研討會論文集,79頁-88頁。
9.陳陽益(2003 I),“非陡坡底床上前進波的非線性解析:I. 系統化攝動展開模式”,第二十五屆海洋工程研討會論文集,39頁-48頁。
10.陳陽益(2003II),“非陡坡底床上前進波的非線性解析:II. 至 階的解析解及印證”,第二十五屆海洋工程研討會論文集,49頁-58頁。
11.許弘莒 (2005) “斜坡底床上前進波的非線性解析”,國立成功大學論文。
12.陳陽益、許弘莒、李孟學(2007), “非陡斜坡底床上前進波之非線性Eulerian解與Lagrangian解間的轉換及波浪變形至碎波(1/3)”,第二十九屆海洋工程研討會論文集, 171頁-176頁。
13.李政達(2008) “波流場中質點運動特性之試驗研究”,國立中山大學論文。
14.林楚佑 (2011) “Lagrangian 系統下孤立波特性之解析”,國立中山大學論文。
15.廖奕鈞 (2011) “波浪作用下啟動沙量試驗研究”, 國立中山大學論文。
16.Asu, I., Lale, B. (2002) “Applications of A Numerical Model to Wave Propagation on mild slopes,” China Ocean Engineering, Vol. 16, pp. 569-576.
17.Biesel, F. (1952) “Study of wave propagation in water of gradually varying depth. Gravity Waves,” U.S. National Bureau of Standards, Circular Vol.521, pp. 243-253.
18.Buldakov, E.V., Taylor, P.H., Taylor, R.E. (2006) “New asymptotic description of nonlinear water waves in Lagrangian Coordinates,” Journal of Fluid Mechanics, Vol. 562, pp. 431-444.
19.Chamberlain, P.G., Porter, D. (1995) “The Modified Mild-Slope Equation,” Journal of Fluid Mechanics, Vol. 291, pp. 393-407.
20.Chen, Y.Y., Yang, B.D., Tang, L.W., Ou, S.H., Hsu, J.R.C. (2004) “Transformation of progressive waves propagating obliquely on a gentle slope,” Journal of Waterways, Port, Coastal and Ocean Engineering, Vol.119, pp. 162-169.
21.Chen, Y.Y., Hwung, H.H., Hsu, H.C. (2005) “Theoretical analysis of surface waves propagation on sloping bottoms part 1,” Wave Motion, Vol. 42, pp. 335-351.
22.Chen, Y.Y., Hsu, H.C., Chen, G.Y., Hwung, H.H. (2006) “Theoretical analysis for surface waves propagation on sloping bottoms, Part 2,” Wave Motion, Vol. 43, pp. 339-356.
23.Chen, Y.Y., Hsu, H.C. (2009) “A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates,” Chinese Physics B, Vol. 18, pp. 861-871.
24.Chen, Y.Y., Hsu, H.C., Chen, G.Y., (2010.) “Lagrangian experiment and solution for irrotational finite-amplitude progressive gravity waves at uniform depth,” Fluid Dynamics Research, Vol. 42, pp. 045501.
25.Chen, Y.Y., Hsu, H.C., Chang, H.K. (2012a) “The irrotational progressive gravity waves propagating on uniform currents in Lagrangian analysis and experiments Part1. Theoretical analysis,” Acta Physics Sinica, Vol. 61, pp. 034702.
26.Chen, Y.Y., Lin, C.Y., Li, M.S., Lee, C.T. (2012b) “The irrotational progressive gravity waves propagating on uniform currents in Lagrangian analysis and experiments Part2. Experimental verification,” Acta Physics Sinica, Vol. 61, pp. 034703.
27.Chen, Y.Y., Li, M.S., Hsu, H.C. (2012c) “Theoretical and experimental study of particle trajectories for nonlinear water waves propagating on a sloping bottom,” Philosophical Transactions of the Royal Society A, Vol. 370, pp. 1543-1571.
28.Chu,V.H., Mei, C.C. (1970) “On slowly-varying Stokes waves,” Journal of Fluid Mechanics, Vol. 41, pp. 873–887.
29.Constantin, A. (2001) “Edge waves along a sloping beach,” Journal of Physics A: Mathematical and General, Vol. 34, pp. 9723-9731.
30.Deo, M.C., Jagdale, S.S. (2003) “Prediction of breaking waves with neural networks,” Ocean Engineering, Vol. 30, pp. 1163-1178.
31.Ehrnstr&;ouml;m, M., Wahl&;eacute;n, E. (2008) “On the fluid motion in standing waves,” Journal of Nonlinear Mathematical Physics, Vol. 15, pp. 74-86.
32.Elgar, S., Guza, R.T. (1985) “Shoaling gravity waves: comparisons between field observations. Linear theory and a nonlinear model,” Journal of Fluid Mechanics, Vol. 158, pp. 47-70.
33.Gaillard, D.D. (1904) “Wave action in relation to engineering structure,” U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 13.
34.Galvin, C.J. (1968) “Breaker type classification on three laboratory beaches,” Journal of Geophysical Research, Vol. 73, pp. 3651-3659.
35.Gerstner, F.J. (1802) “Theorie de wellen,” Abh. d. K. bohm. Ges. Wiss. reprinted in Ann der Physik, Vol. 32, pp. 412-440.
36.Goda,Y. (1970) “A synthesis of breaker indices,” Transactions of the Japan Society of Civil Engineering, Vol. 2, pp. 227-230.
37.Goda, Y. (1974) “New wave pressure formula for composite breakwater,” Proceedings of 14th International Conference on Coastal Engineering, pp. 1702-1720.
38.Goda, Y. (1975) “Irregular wave deformation in the surf zone,” Coastal Engineering In Japan, Vol. 18, pp. 13-26.
39.Goda, Y. (2004) “A 2-D random wave transformation model with gradational breaker index,” Coastal Engineering Journal, Vol. 46, pp. 1-38.
40.Goda, Y. (2010) Reanalysis of regular and random breaking wave statistics, Coastal Engineering Journal, Vol. 52, pp. 71-106.
41.Gotoh, H., Sakai, T. (1999) “Lagrangian simulation of breaking waves using particle method,” Coastal Engineering Journal, Vol. 41, pp. 303-326.
42.Hamada, T. (1951) “Breakers and beach erosion, Port and Harbor Research Institute,” Ministry of Transportation, Japan, Vol. 165.
43.Hansen, J.B. (1990) “Periodic waves in the surf zone: Analysis of experimental data,” Coastal Engineering, Vol. 14, pp. 19-41.
44.Hu, D.M. (1985) “Analytical solution of linear wave potential function on sloping bottom,” Acta Oceanological Sinica, Vol. 4, pp. 539-533.
45.Hsu, H.C., Chen, Y.Y., Wang, C.F. (2010) “Perturbation analysis of the short-crested waves in Lagrangian coordinates,” Nonlinear Analysis Series B: Real World Applications, Vol. 11, pp.1522-1536.
46.Iversen, H.W. (1952) “Waves and breakers in shoaling water,” Proceedings of 3rd International Conference on Coastal Engineering, pp. 1-12.
47.Iwagaki, Y., Sakai, Tsukioka, T.K., Sawai, N. (1974) “Relationship between vertical Distribution of water particle Velocity and type of breaker on beachs,” Coastal Engineering In Japan, Vol. 17, pp. 51-58.
48.Kennedy, A.B., Chen, Q., Kirby, J.T., Dalrymple, R.A. (1999), “Boussineaq modeling of wave transformation, breaking, and run-up, I, 1D,” Journal of Waterways, Port, Coastal and Ocean Engineering, Vol. 126, pp. 39-47.
49.Lamb, H. (1932) Hydrodynamics. 6th edn. Cambridge University Press.
50.Le M&;eacute;haut&;eacute; B., Koh, R.C.Y. (1967) “On the Breaking of waves arriving at an angle to the shore,” Journal of Hydraulic Research, Vol. 5, pp. 67-88.
51.Li, R., Wang, H. (1999) “Nonlinear Effect of Wave Propagation in Shallow Water,” China Ocean Engineering, Vol. 13, pp. 109-114.
52.Liu, P.L.F., Dingemans, M.W. (1989) “Derivation of the third-order evolution equations for weakly nonlinear water waves propagating over uneven bottoms,” Wave Motion, Vol. 11, pp. 41-64.
53.Longuet-Higgins, M.S. (1953) “Mass transport in water waves.” Philosophical Transactions of the Royal Society A, Vol. 245, pp. 533-581.
54.Longuet-Higgins, M.S., Stewart, R.W. (1964) “Radiation stress in water wave – a physical discussion with applications,” Deep Sea Research, Vol. 11, pp. 3-26.
55.Longuet-Higgins, M.S. (1986) “Eulerian and Lagrangian aspects of surface waves, ” Journal of Fluid Mechanics, Vol. 173, pp. 683-707.
56.Mason, M.A. (1941) “A study of progressive oscillatory waves in water,” U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 1.
57.Mei, C.C. (1983), “The Applied Dynamics of Ocean Surface Waves,” pp. 420-426, John Wiely.
58.Miche, A. (1944) “Mouvements ondulatoires de la mer en profondeur constante ou d&;eacute;croissante, ” Annales des ponts et chaussees , pp. 25-78, 131-164, 270-292, 369-406.
59.Naciri, M., Mei, C.C. (1993) “Evolution of short gravity waves on long gravity waves, ” Physics of Fluids A , Vol. 5, pp. 1869-1878.
60.Ng, C.O. (2004a) “Mass transport in a layer of power-law fluid forced by periodic surface pressure,” Wave Motion, Vol. 39, pp. 241-259.
61.Ng, C.O. (2004b) “Mass transport and set-ups due to partial standing surface waves in a two layer viscous system,” Journal of Fluid Mechanics, Vol. 520, pp. 297-325.
62.Ng, C.O. (2004c) “Mass transport in gravity waves revisited,” Journal of Geophysical Research-Oceans, Vol. 109, pp. C04012.
63.Ng, C.O., Zhang, X.Y. (2007) “Mass Transport in water waves over a thin layer of soft Viscoelastic mud,” Journal of Fluid Mechanics, Vol. 573, pp. 105-130.
64.Nwogu, O. (1993) “Alternative form of Bousssinesq equations for nearshore wave propagation,” Journal of Waterways, Port, Coastal and Ocean Engineering, Vol. 119, pp. 618-638.
65.Ogawa, Y., Shuto, N. (1984) “Run-up of periodic waves on beaches of non-uniform slope,” Proceedings of 19th International Conference on Coastal Engineering, pp. 328-334.
66.Pierson, W.J. (1962) “Perturbation analysis of the Navier-Stokes equations in Lagrangian form with selected linear solution,” Journal of Geophysical Research, Vol. 67, pp. 3151-3160.
67.Porter, D., Staziker, D.J. (1995), “Extensions of the Mild-Slope Equation,” Journal of Fluid Mechanics, Vol. 300, pp. 367-382.
68.Rakine, W.J.M. (1863) “On the exact form of waves near the surface of deep water,” Philosophical Transactions of the Royal Society of London, Vol. 153, pp. 127-138.
69.Rattanapitikon, W., Shibayama, T. (2000) “Verification and modification of breaker height formulas,” Coastal Engineering Journal, Vol. 42, pp. 389-406.
70.Rienecker, M.M. and Fenton, J.D. (1981), “A Fourier approximation method for steep water waves,” Journal of Fluid Mechanics, Vol. 140, pp. 119-137.
71.Saeki, H.S. Hanayasu, A.O., Takgi, K. (1971) “The shoaling and run-up height of the solitary wave,” Coastal Engineering in Japan, Vol. 14, pp. 25-42.
72.Sanderson, B. (1985) “A Lagrangian solution for internal waves,” Journal of Fluid Mechanics, Vol. 152, pp. 191-137.
73.Seyama, A., Kimura, A. (1988) “The measured properties of irregular wave breaking and wave height change after breaking on slope,” Proceedings of 21st International Conference on Coastal Engineering, pp. 419-432.
74.Smith, J. M., Kraus, N. C. (1990) “Laboratory study on macro-features of wave breaking over bars and artificial reefs,” Technical Report CERC-90-12, WES, US Army Corps of Engineers.
75.Street, R.L., Camfield F.E. (1966) “Observations and experiments on solitary wave deformation,” Proceedings of 10th International Conference on Coastal Engineering, pp. 284-301.
76.Sunamura, T., Horikawa, K. (1974) “Two-dimensional beach ransformation due to waves,” Proceedings of 14th International Conference on Coastal Engineering, pp. 920-938.
77.Sunamura, T. (1980) “A laboratory study of offshore transport of sediment and a model for eroding beaches,” Proceedings of 17th International Conference on Coastal Engineering, pp. 1051-1070.
78.Sunamura, T. (1983) “Determination of breaker height and depth in the field,” Annual Report of the Institute of Geosciience, Universityof Tsukuba, Vol. 8, pp. 53-54.
79.Suquet, F. (1950) “Experimental study on the breaking of waves,” La Houille Blancha, Vol. May to June, pp. 362.
80.Tang, L. W. (1966) “Coastal Engineering researches on the western coast of Taiwan,” Proceedings of 10th International Conference on Coastal Engineering,, pp. 1274-1290.
81.Tanimoto, K., Nakamura, S., Zhao, Q. (1996) “Evaluation of wave motions and radiation stress on steep slope,” Proceedings. 43th Japan Coastal Engineering Conference, pp. 26-31.
82.Tsai, C.P., Chen, H.B., Hwung, H.H., Hwuang, M.J. (2005) “Examination of empirical formulas for wave shoaling and breaking on steep slopes,” Ocean Engineering, Vol. 32, pp. 469-483.
83.Wei, G., Kirby, J. T., Grilli, S. T., Subramanya, R. (1995), “A fully nonlinear Boussinesq model for surface waves,” Journal of Fluid Mechanics, Vol. 294, pp. 71-92.
84.Yakubovich, E.I., Zenkovich, D.A. (2001) “Matrix approach to Lagrangian fluid dynamics,” Journal of Fluid Mechanics, Vol. 443, pp. 167-196.
85.Zhang, H., Hong, G., Ding, P. and Cao, Z. (2001) “Numerical Simulation of Non-Linear Wave Propagation in Waters of Mildly Varying Topography with Complicated Boundary,” China Ocean Engineering, Vol. 15, pp. 37-52.
86.Zhang, X.Y., Ng, C.O. (2006) “On the oscillatory and mean motions due to waves in thin viscoelastic layer,” Wave Motion, Vol. 43, pp. 397-405.
87.Zhao, Q., Nakamura, S., and Tanimoto, K. (1996) “Distribution of particle velocities due to waves on very deep slope bottom,” 10th Congress of IAHR-APD, pp. 365-372.