跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃韻如
研究生(外文):Yu Ru Huang
論文名稱:船舶柴油引擎活塞冷卻系統往復運動正交通道加裝凸起物之流場熱傳性能研究
論文名稱(外文):Heat Transfer of Orthogonal Tube Fitted with Ribs in Reciprocating Motion for Marine Diesel Engine Piston Cooling Application
指導教授:黃正清黃正清引用關係
指導教授(外文):C. C. Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:造船及船舶機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:71
中文關鍵詞:低速柴油引擎活塞冷卻系統熱傳導
外文關鍵詞:Marine Diesel EnginePistonCooling SystemHeat Transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
國際間的貨運運輸在成本的考量下,使得船舶運輸體系和航空運輸相比,在經濟上佔有絕對的優勢;尤其現今船舶科技的進步,使得航行的速度加快,航運安全性全面提昇,配合其原有大運輸量的特色,可預見在未來的運輸業市場中仍將佔有一席之地。在能源危機之後,船舶航運市場因航運成本激增,新船的建造無不以降低燃油成本為主要的考量;經過多年的努力,船舶引擎性能的改進大多朝向使用劣質燃油、降低引擎轉速及高溫高壓之熱力循環等方向改進發展,以期提高螺漿之推進效率並增加引擎單位重量之馬力輸出,最終達到降低成本的目的。
在高溫高壓的熱力循環發展狀況下,引擎活塞承受的溫度、壓力均較以往的引擎增高許多。各部份的往復構件因承受過大的熱應力而導致材料燒損的案例亦較以往增加許多,改善的方法唯有從更佳的機械材料或是採用更有效率的冷卻系統這方面著手。
將表面粗糙法之內設凸起物(Rib)冷卻技術應用於工業界,以增進熱傳性能之技術已是十分普遍,然而應用於柴油主機內承受往復運動狀態之活塞冷卻系統,形成流場隨著邊界作往復運動之熱傳性能研究仍屬少見;關於與往復運動正交下的冷卻通道熱傳性能改善,之前的相關論文中均未曾提及過,在本文中是首度被提出。
本論文利用無因次的方法,對受到與往復運動正交方向之流場進行參數分析,建立控制此流場熱傳性能之參數後,模擬實際船舶主機運轉時活塞之冷卻情形並進行實驗量測,作為評估活塞冷卻之基準,然後應用現已實用於工業界的技術,在與往復運動正交方向之圓形冷卻通道中加裝凸起物以增加熱傳效能並予以測量其熱傳係數及其相關之物理現象,據以討論此流場受往復力之影響,在週向不同位置之熱傳情形以及其與平行於往復運動方向之流場的差異。本研究所得將可作為研發及改進此類船用低速柴油引擎活塞冷卻系統之參考。
The fuel economy plays the most important requirement for a marine propulsion plant as it has the decisive influence on the operating cost of a ship. In general the improvements of the propulsive and engine efficiencies could reduce the fuel consumption. As an attempt to enhance the competitive advantages for the marine transportation business, the use of low quality and high viscosity diesel fuel and the high temperature as well as pressure thermodynamic cycle has been a global trend for the development of marine diesel engine.
The first stage of this research project applies the experimental method when the parametric analysis for the flow and energy equations was performed. The flow parameters, which controlled the heat transfer phenomena in the coolant channel of the piston, are identified; the experimental facilities and program will be established in accordance with the parametric conditions experienced by a real marine diesel engine. The experimental result for the flow within smooth-walled duct under the reciprocating motion will be used as the reference datum to assess the results for the study of heat transfer augmentation. As an attempt to enhance the cooling performance, the ribs will be installed in the coolant channels which flow was orthogonal mode for the piston moving direction. Finally, the results obtained for the tests with heat transfer augmentation devices will be compared with the smooth-walled test results. As long as the experimental tests are completed, the heat transfer correlation could be developed to assist the shipping industry during the design manufacturing stages for the marine diesel engine.
目 錄
摘要 I
目錄 II
圖目錄 IV
符號說明 VI
第一章 前言 1
1.1 工業背景 1
1.2 學術背景 4
1.3 文獻回顧 6
1.4 研究方法 10
第二章 理論分析 12
2.1 無因次化流場之動量方程式 12
2.2 無因次化流場之能量方程式 17
第三章 實驗設備 20
3.1 往復機組配置 20
3.2 變壓器、流量計 21
3.3訊號擷取控制系統 21
3.4 熱傳實驗測試體 23
第四章 實驗步驟與數值分析 26
4.1 參數範圍 27
4.2 實驗步驟 28
4.3 數值處理方法 29
4.3.1無因次參數之物理意義 31
4.3.2 無因次參數之計算 32
第五章 實驗結果與討論 33
第六章 結論 39
參考文獻 69
自述 71
1. Editorial of MESJ, “Annual Review of Marine Engineering Progress in 1998.”, Journal of The Marine Engineering Society in Japan, Vol.34, No.7, pp.436-441, (1999)
2. 樓無畏, “船舶輪機實務”, pp.12-40, 前程出版社,1985.
3. Yasunori T. “Damage on Marine Diesel Engine Current and in Future.”, Journal of M.E.S.J Vol.29 No.12 pp.930-935,1994.
4. Mitsubishi Heavy Industries “Mitsubishi-Sulzer RTA Type Marine Diesel Engine.”, Technology Report, Mitsubishi Heavy Industries, Ltd. Kobe Shipyard & Engine Works ,.1983.
5. Bergles A.E. “Heat Transfer Enhancement - The Encouragement and Accommodation of High Heat Fluxes.”, Journal of Heat Transfer Transactions of The ASME, Vol.119 pp.8-19 ,1997.
6. Savage,T.E., “The Effect of Roughness on Heat and Momentum Transter.”, Ph.D. Thesis, Department of Mechanical Engineering, Purdue University, 1961.
7. Han J.C., Zhang, Y.M. and Lee, C.P., “ Augmented Heat Transfer in Square Channels with Parallel, Crossed, and V-Shaped Angled Ribs.”, ASME Journal of Heat Transfer, Vol. 113, No. 3, p. 590-596,1991.
8. Shen, J.R., Wang, Z., Ireland, P.T., Jones, T.V. and Byerley, A.R., “Heat Transfer Enhancement Within a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes.”, ASME Journal of Turbomachinery, Vol. 118, p. 428-434,1996.
9. Taslim, M.E., Li, T. and Kercher, D.M., “Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls.”, ASME Journal of Turbomachinery, Vol. 118, p. 20-28,1996.
10. Chandra P.R., Niland M.E. and Han, J.C., “Turbulent Flow Heat Transfer and Friction in a Rectangular Channel With Varying Numbers of Ribbed Walls.”, ASME Journal of Turbomachinery, Vol. 119, p. 374-380,1997.
11. Mochizuki, S., Murata, A. and Fukunga, M., “Effect of Rib Arrangements on Pressure Drop and Heat Transfer in a Rib-Roughened Channel With a Sharp 180 deg Turn ..”, ASME Journal of Turbomachinery, Vol. 119, p. 610-616,1997.
12. Taslim, M.E., Li, T. and Spring, S.D., “ Measurements of Heat transfer Coefficients and Friction Factors in Passages Rib-Roughened on All Walls.”, ASME Journal of Turbomachinery, Vol. 120, , p. 564-570,1998.
13. Taslim, M.E. and Lengkong, A., “ 45 deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel.”, ASME Journal of Turbomachinery, Vol. 120, p. 571-580,1998.
14. Liou, T.M., Chang, Y. and Hwang, D.W., “ Experimental and Computational Study of Turbulent Flows in a Channel With Two Pairs of Turbulence Promoters in Tandem.”, ASME Journal of Heat Transfer, Vol. 112, p. 302-309,1992.
15. Liou, T.M. and Hwang, J.J., “Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows.”, ASME Journal of Heat Transfer, Vol. 114, p. 56-64,1992.
16. Fann, S., Yang. W. J. and Zhang N., “ Local Heat Transfer in a Rotating Serpentine Passage With Rib-Roughened Surfaces.”, Int. J. Heat Mass Transfer, Vol. 37, No. 2, p. 217 ~ 228, 1994.
17. Grassmann P.P. and Tuma M. “Applications of the Electrolytic Method - II Mass Transfer Within a Tube for Steady Oscillating and Pulsating Flows.” Int. Journal Heat Mass Transfer Vol.22 pp.799-804, 1979.
18. Patera A.T. and Mikic B.B. “Exploiting Hydrodynamic Instabilities Resonant Heat Transfer Enhancement.”, International Journal Heat Mass Transfer ,Vol.29 ,pp.1127-1138, 1986.
19. Siegel R. and Perlmutter M. “Heat Transfer for Pulsating Laminar Duck Flow.”, ASME Journal of Heat Transfer ,Vol.84, pp.111-123, 1962.
20. Kim S.Y Kang B.H and Hyun A.E “Heat Transfer in The Thermally Developing Region of a Pulsating Channel Flow.” ,Int. Journal Heat Mass Transfe, Vol.36 , No.17, pp.1257-1266 , 1993.
21. Patera A.T. and Mikic B.B. ,“Exploiting Hydrodynamic Instabilities Resonant Heat Transfer Enhancement.” , International Journal Heat Mass Transfer, Vol.29 , pp.1127-1138, 1986.
22. Nishimura T. Taurmoto A. and Kawamura Y., “Flow and Mass Transfer Characteristics in Wavy Channels for Oscillatory Flow. ” ,International Journal of heat and mass Transfer, Vol.30 , pp.1007-1015 , 1987.
23. Nishimura T. Arakawa S. Murakami S. and Kawamura Y., “Oscillatory Viscous Flow in Symmetric Sinusoidal Wavy-walled Channels.”, Chemical Engine Sci., Vol.44 , pp. 2137-2148, 1989.
24. Nishimura T. Arakawa S. Murakami S. and Kawamura Y. ,“Oscillatory Flow in a Symmetric Sinusoidal Wavy-walled Channel at Intermediate Strouhal Numbers.”, Chemical Engine Sci. ,Vol.46, pp.757-771, 1991.
25. Nishimura T. and Kojima N., “Mass Transfer Enhancement in a Symmetric Sinusoidal Wavy-walled Channel for Pulsating Flow. ”, International Journal of Heat and Mass Transfer , Vol.38, No.9, pp.1719-1731 , 1995.
26. 楊春陵 ,"通道內設凸起物及衝擊噴射流做往復運動時之熱傳實驗研究", 國立成功大學造船及船舶機械工程研究所博士論文, 1999.
27. Chang S.W., Su L.M., Huang C.C. and Yang T.L., “Heat Transfer in a Reciprocating Duct Fitted with Transverse Ribs. ”, Journal of Heat Transfer, 1999.
28. Yang T.L, Chang S.W., Su L.M. and Huang C.C., “Heat Transfer of Confined Impinging Jet onto Spherically Concave Surface with Piston Cooling Application. ”, JSME Series B, Vol.42, No.2,1999.
29. Chang S.W. .and Su L.M., “Influence of Reciprocating Motion on Heat Transfer Inside Ribbed Duct with Application to Piston Cooling in Marine Diesel Engine. ”, Journal of Ship Research, Vol.41, No.4, pp.332-339, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top