|
1.Leitch, I.J., et al., Genome size diversity in orchids: consequences and evolution. Ann Bot, 2009. 104(3): p. 469-81. 2.劉翠玲, 蘭花生物科技重現蝴蝶蘭光輝年代. 農業生技產業季刊, 2009. 第17期: p. 58-62. 3.Moriya, Y., et al., KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 2007. 35(Web Server issue): p. W182-5. 4.Conesa, A., et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005. 21(18): p. 3674-3676. 5.Hsu, C.C., et al., An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol, 2011. 11: p. 3. 6.Holtorf, H., M.-C. Guitton, and R. Reski, Plant functional genomics. Naturwissenschaften, 2002. 89(6): p. 235-249. 7.Tsai, W.-C., et al., Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Science, 2006. 170(3): p. 426-432. 8.Qaim, M., The Economics of Genetically Modified Crops. Annual Review of Resource Economics, 2009. 1(1): p. 665-694. 9.Johannes Spaethe, M.S.a.H.F.P., Why sexually deceptive orchids have colored flowers. Communicative & Integrative Biology, 2010. 3:2: p. 139-141. 10.Joshua Z. Levin, J.C.F., Xuemei Chen and Elliot M. Meyerowitz, A Genetic Screen for Modifiers of UFO Meristem Activity Identifies Three Novel FUSED FLORAL ORGANS Genes Required for Early Flower Development in Arabidopsis. Genetics Society of America, 1998. 11.Bin Guo, S.H., Tian Zhang, Jon K. Pittman, Donghong Chen , Feng Ming1,, Cloning and Characterization of a PI-like MADS-Box Gene in Phalaenopsis Orchid. Biochemistry and Molecular Biology, 2007. 40: p. 845-852. 12.Chang Run Li, X.B.Z.a.C.S.H., Cloning of a sucrose-phosphate synthase gene highly expressed in fowers from the tropical epiphytic orchid Oncidium Goldiana. Experimental Botany, 2003. 54(3990): p. 2189-2191. 13.Conesa, A. and S. Gotz, Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 2008. 2008: p. 619832. 14.Gotz, S., et al., High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res, 2008. 36(10): p. 3420-35. 15.Zhao, P., et al., Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. In Vitro Cellular & Developmental Biology - Plant, 2008. 44(3): p. 178-185. 16.Zerbino, D.R. and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 2008. 18(5): p. 821-9. 17.Marcel H. Schulz, D.R.Z., Martin Vingron, Ewan Birney, Oases Robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics, 2012. 28(8). 18.Kim, E., A. Goren, and G. Ast, Alternative splicing: current perspectives. BioEssays, 2008. 30(1): p. 38-47. 19.Edgar, R.C., Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010. 26(19). 20.Trapnell, C., et al., Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010. 28(5): p. 511-5. 21.Roberts, A., et al., Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 2011. 12(3): p. R22. 22.Roberts A, P.H., Trapnell C, Pachter L. , Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 2011. 27(17): p. 2325-9. 23.Liu, C.C., et al., CRSD: a comprehensive web server for composite regulatory signature discovery. Nucleic Acids Res, 2006. 34(Web Server issue): p. W571-7. 24.Poisson, L.M., J.M. Taylor, and D. Ghosh, Integrative set enrichment testing for multiple omics platforms. BMC Bioinformatics, 2011. 12: p. 459. 25.Trapnell, C., L. Pachter, and S.L. Salzberg, TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009. 25(9): p. 1105-11. 26.Subramanian, A., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005. 102(43): p. 15545-15550.
|