跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳哲明
論文名稱:光聚機之光譜分析及聚合能力比較
論文名稱(外文):Spectrum analysis and curing ability comparison among curing units
指導教授:陳敏慧陳敏慧引用關係陳瑞松陳瑞松引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:96
中文關鍵詞:光聚機電漿光光譜分析樹脂表面硬度測試硬度比
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光聚式複合樹脂 ( Light-cure composite resin ) 應用在牙科治療領域已有一、二十年之歷史。由於操作方便、塑形容易、色澤穩定且極具美觀性,因此被廣泛的使用於牙體復形治療。但樹脂最大的缺點為硬化時會產生聚合收縮而引發術後敏感或導致充填治療失敗。目前廣泛所使用的光聚機是以鹵素燈泡為光源,為了降低樹脂收縮引發之邊緣應力,學者試圖改變傳統鹵素光聚合模式,而有新型多功能鹵素光聚機的發展;此外為了縮短聚合所需之時間,學者試圖以較大光照強度來聚合樹脂而有電漿光聚機的發展。然而這些新型光聚機光譜特性、或是不同光照強度模式對聚合樹脂的效果,仍少有相關的研究。
因此,本研究的目的主要在探討三個主題 : 一. 比較傳統鹵素光聚機、新型多功能鹵素光聚機和電漿光聚機頻譜分布上的差異。 二. 比較不同光聚機種內所設定之光聚合模式其光照強度值變化。 三. 依廠商所提供不同的光聚合模式下,測定樹脂聚合後的表面硬度是否有所差異。本次研究所測試的光聚機分別為: 傳統鹵素光聚機 XL-3000 ( 3M , USA );新型多功能鹵素光聚機 Optilux 501 ( Kerr )、Q-Lux pro V ( Rolence , R.O.C );電漿光聚機Apollo 95E ( DMD),Flipo ( Lokki , French )等五台光聚機。所選用的光聚式複合樹脂為 Z — 100 , A2 ( 3M , USA )。
在光譜分析方面,利用頻譜分析儀(S-2000 , Ocean Optics Inc. , USA)分析各台光聚機所射出的藍光頻譜。結果顯示,傳統鹵素光聚機與新型多功能鹵素光聚機的頻譜分布相似。傳統鹵素光聚機(XL─3000)的頻譜範圍為410 ~ 520 nm,波峰出現在498、499nm;而新型多功能鹵素光聚機中的Q-Lux pro V頻譜範圍為400 ~ 520 nm,波峰出現在498、499nm;而另一台新型多功能鹵素光聚機Optilux 501的頻譜範圍為390 ~ 520 nm,波峰出現在497、498nm。電漿光聚機在使用時以配備有引光導管的測試結果顯示出其頻譜範圍較鹵素光聚機狹窄,其中Flipo的頻譜範圍為430 ~ 520 nm,波峰出現在469、474、484、493nm;而Apollo 95E的頻譜範圍為450 ~ 510 nm,波峰出現在474、484nm。在光照強度測試中,電漿光聚機的強度表現最佳,最高是Apollo 95E的1800mW/cm2,其次是Flipo的1500 mW/cm2;而傳統鹵素光機的強度為360mW/cm2;在新型多功能鹵素光聚機的強度方面,則隨著模式設定的不同,光照強度範圍從140mW/cm2到700 mW/cm2不等。在聚合能力測試,樹脂充填在半徑2mm,厚度2mm中空圓柱型的鐵氟龍模具中,然後以光聚機中所設定之光聚合模式加以聚合。每組模式做十二個試片,然後測量比較其樹脂試片頂部和底部硬度值之差異。所得到的結果,以XL─3000聚合之樹脂其頂部表面硬度為100.5+3.3KHN,底部表面硬度為 85.3+2.8KHN。而以Q-Lux pro V聚合之樹脂其頂部表面硬度範圍為82.6+4.3 ~ 107.5+4.4KHN,底部表面硬度範圍為71.3+2.7 ~ 96.0+3.2KHN;而以Optilux 501聚合之樹脂其頂部表面硬度範圍為81.3+1.7 ~ 108.5+4.2KHN,底部表面硬度範圍為66.6+1.5 ~ 91.6+1.7KHN;而以Flipo聚合之樹脂其頂部表面硬度範圍為18.8+2.1 ~ 90.2+0.9KHN,底部表面硬度範圍為16.1+0.5 ~ 83.1+1.4KHN;而以Apollo 95E聚合之樹脂其頂部表面硬度範圍為38.8+1.7 ~ 91.7+1.7 KHN KHN,底部表面硬度範圍為29.6+0.8 ~ 85.5+2.5KHN。若以XL─3000聚合後樹脂的表面硬度為標準,在硬度比分析中,則僅有傳統鹵素光機與多功能鹵素光機中的幾種模式可用來評比,而電漿光聚合機則完全無任何模式達到分析標準。換言之,以高光照強度輸出的電漿光聚合機在依廠商指示的聚合模式下在聚合能力測試所得到的結果並無法獲得如傳統鹵素光機之聚合效果。
零. 謝誌 3
壹. 中文摘要 4
貳. 英文摘要 7
參. 簡介 8
肆. 文獻回顧                10
4.1 光源種類 12
4.2 光照模式的改變 14
4.3 光聚機的改變 17
伍. 材料與方法 21
陸. 結果 26
柒. 討論                  33
捌. 結論 43
玖. 附表 46
壹拾. 附圖 64
壹拾壹. 參考文獻 81
1. Abate PF, Zahra VN, Macchi RL (2001) Effect of photopolymerization variables on composite hardness. Journal of prosthetic dentistry, 86: 632-635.
2. Anne Peutzfeldt , Erik Asmussen , Hardness of restorative resins : effect of camphorquinone , amine , and inhibitor. (1989) Acta Odontol Scand 1989 ; 47 : 229 — 231
3. Anonymous. (1986) The effects of blue light on the retina and the use of protective filtering glasses. Council on Dental Materials, Instruments, and Equipment. [Journal Article] Journal of the American Dental Association. 112(4):533-5, Apr.
4. Antonson DE. Benedetto MD. (1986) Longitudinal intensity variability of visible light curing units. [Journal Article] Quintessence International. 17(12):819-20, Dec.
5. Asmussen E, Peutzfeldt A (2001a) Influence of selected components on crosslink density in polymer structures. European journal of oral sciences, 108: 282-285
6. Asmussen E, Peutzfeldt A (2001b) Influence of pulse-delay curing on softening of polymer structures. Journal of Dental Research, 80: 1570-1573
7. Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. (1982) Scand J Dent Res ; 90 : 490 ~ 496
8. Asmussen E. Restorative resins : Hardness and strength vs. quantity of remaining double bonds. (1982) Scand J Dent Res 1982 ; 90 : 484~ 489
9. Bayne SC & Taylor DF (1995):Dental materials in The Art and Science of Operative Dentistry , Sturdevant CM, Roberson TM, Heymann HO & Sturdevant JR , eds , 3rd edition St Louis Mosby pp260.
10. Bayne SC , Heymann HO & Swift EJ Jr (1994):Update on dental composite restorations. Journal of the American Dental Association 125(6) 687~701
11. Brackett WW, Haisch LD, Covey DA. (2000) Effect of plasma arc curing on the microleakage of class V resin-based composite restorations. American journal of dentistry, 13: 121-122.
12. Braga RR, Ferracane JL. (2002) Contraction stress related to degree of conversion and reaction kinetics. Journal of Dental Research, 81: 114-118
13. Brosh T , Baharav H , Gross O & Laufer BZ (1997):The influence of surface loading and irradiation time during curing on mechanical properties of a composite. Journal of Prosthetic Dentistry 77(6)573 ~577
14. Chen RS, Liu CC, Tseng WY, Hong CY, Hsieh CC, Jeng JH (2001) The effect of curing light intensity on the cytotoxicity of a dentin-bonding agent. Operative Dentistry, 26: 505-510
15. Ernst CP, Kurschner R, Rippin G, Willershausen B (2000) Stress reduction in resin based composite cured with a two-step light-curing unit. American journal of dentistry, 13: 69-72
16. Fano L, Ma WY, Marcoli PA, Pizzi S, Fano V. (2002) Polymerization of dental composite resin using plasma light. Biomaterials, 23: 1011-1015
17. Fan PL. Wozniak WT. Reyes WD. Stanford JW. (1987) Irradiance of visible light-curing units and voltage variation effects. [Journal Article] Journal of the American Dental Association. 115(3):442-5, Sep
18. Hasegawa T, Iton K, Yukitani W, Wakumoto S, Hisamitsu H (2001a) Depth of cure and marginal adaptation to dentin of xenon lamp polymerized resin composites. Operative Dentistry, 26: 585-590
19. Hasegawa T, Iton K, Yukitani W, Wakumoto S, Hisamitsu H (2001b) Effects of soft —start irradiation on the depth of cure and marginal adaptation to dentin. Operative Dentistry, 26:389-395
20. Hayakawa T, Horie K. (1992) Effect of water-soluble photoinitiator on the adhesion between composite and tooth substrate. Dental materials, 8: 351-353
21. Hofmann N. Renner J. Hugo B. Klaiber B. (2002) Elution of leachable components from resin composites after plasma arc vs standard or soft-start halogen light irradiation. [Journal Article] Journal of Dentistry. 30(5-6):223-32, 2002 Jul-Aug
22. Jandt KD, Mills RW, Blackwell GB, Ashworth SH. (2000) Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dental materials, 16: 41-47
23. Joseph B, Peter Y, Ricardo S, James C. (2000) Effect of variable light intensity on composite shrinkage. The journal of prosthetic dentistry, 84:499-505
24. Kanca J, Suh BI (1999) Pulse activation: Reducing resin-based composite contraction stresses at the enamel cavosurface margins. American journal of dentistry, 12: 107-112
25. Kanca J 3rd. Clinical experience with PYRAMID stratified aggregate restorative and the VIP unit. (1999) [Journal Article] Compendium of Continuing Education in Dentistry. Supplement. (25):S67-72, Nov.
26. Kim JW, Jang KT, Lee SH, Kim CC, Hahn SH, Garcia-Goday F (2002) Effect of curing method and curing time on the microhardness and wear of pit and fissure sealants. Dental materials, 18: 120-127
27. Knezevic A. Tarle Z. Meniga A. Sutalo J. Pichler G. Ristic M.(2002) Photopolymerization of composite resins with plasma light. [Journal Article] Journal of Oral Rehabilitation. 29(8):782-6, 2002 Aug
28. Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G. (2001) Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. Journal of Oral Rehabilitation, 28: 586-591
29. Koran P, Kurschner R. (1998) Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. American journal of dentistry, 10: 17-22
30. Kurachi C, Tuboy AM, Magalhaes DV, Bagnato VS. (2001) Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dental materials, 17: 309-315
31. Lee SY , Chiu CH , Boghosian A & Greener EH (1993) Radiometric and spectroradiometric comparison of power outputs of five visible light-curing units. Journal of Dentistry 21(6) 373 ~ 377
32. Leonard DL, Charlton DG, Roberts HR, Hilton TJ, Zionic A (2001) Determination of the minimum irradiance required for adequate polymerization of a hybrid and a microfill composite. Operative Dentistry, 26:176-180
33. Leonard DL. Charlton DG. Hilton TJ. (1999) Effect of curing-tip diameter on the accuracy of dental radiometers. [Journal Article] Operative Dentistry. 24(1):31-7, Jan-Feb.
34. Loney RW, Price RBT (2001) Temperature transmission of high-output light-curing units through dentin. Operative Dentistry, 26: 516-520
35. Luo Y, Lo ECM, Wei SHY, Tay FR (2002) Comparison of pulse activation vs conventional light-curing on marginal adaptation of a compomer conditioned using a total-etch or a self-etch technique. Dental materials, 18: 36-48
36. M.Taira , M. Okazaki , J. Takahashi ( 1998 ) Studies on optical properties of two commercial visible-light-cured composite resins by diffuse reflectance measurements. Journal of Oral Rehabilitation ,26 ; 329-327
37. Martin FE. (1998) A survey of the efficiency of visible light curing units. Journal of Dentistry, 26:239-243
38. Manga RK , Charlton DG & Wakefield CW (1995) In vitro evulation of a curing radiometer as a predictor of polymerization depth. General Dentistry 43(3) 241 ~ 243
39. Mehl A, Hickel R, Kunzelmann KH (1997) Physical properties and gap formation of light-cured composites with and without ‘softstart-polymerization’. Journal of Dentistry, 25:321-330
40. .Millar BJ, Nicholson JW (2001) Effect of curing with a plasma light on the properties of polymerizable dental restorative materials. Journal of Oral Rehabilitation, 28: 549-552
41. Mills RW, Jandt KD, Ashworth SH. (1999) Dental composite depth of cure with halogen and blue light emitting diode technology. British Dental Journal, 186: 388-391
42. Mitton BA, Wilson HF (2001) The use and maintenance of visible light activating units in general practice. British Dental Journal, 191: 82-86
43. Miyazaki M, Hattori T, Ichiishi Y, Kondo M, Onose H, Moore BK. (1998) Evaluation of curing units used in private dental offices. Operative Dentistry, 23:50-54
44. Miyazaki M, Oshida Y, Moore BK, Onose H (1996) Effect of light exposure on fracture toughness and flexural strength of light-cured composites. Dental materials, 12:328-332.
45. Moseley H. Strang R. MacDonald I. (1987) Evaluation of the risk associated with the use of blue light polymerizing sources. [Journal Article] Journal of Dentistry. 15(1):12-5, Feb
46. Munksgaard EC, Peutzfeldt A, Asmussen E. (2000) Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light. European journal of oral sciences, 108: 341-345
47. Nagel R. Operation and diagnostic features of the VIP light. (1999) [Journal Article] Compendium of Continuing Education in Dentistry. Supplement. (25):S55-9; quiz S74, Nov
48. Nelson SK. Ruggeberg FA. Heuer GA. Ergle JV. (1999) Effect of glutaraldehyde-based cold sterilization solutions on light transmission of single-use, plastic light-curing tips. [Journal Article] General Dentistry. 47(2):195-9, 1999 Mar-Apr
49. Nakanuma K, Hayakawa T, Tomita T, Yamazaki M. (1998) Effect of the application of dentin primers and dentin bonding agent on the adhesion between the resin-modified glass-ionomer cemrnt and dentin. Dental materials, 14: 281-286
50. Nicholls JI. Dental lights: where has the simplicity gone? (2002) [Journal Article] Quintessence International. 33(2):160-1, Feb
51. Nicholls JI. Dental lights, light meters, and light meter readings. (2001) [Journal Article] Quintessence International. 32(10):818-9, Nov-Dec
52. Park SH, Krejci I, Lutz F. (2002) Microhardness of resin composites polymerized by plasma arc or conventional visible light curing. Operative Dentistry, 27: 30-37
53. Park YJ, Chae KH, Rawls HR. (1999) Development of a new photoinitiation system for dental light-cure composite resins. Dental materials, 15: 120-127
54. Park YJ, Chae KH, Rawls HR. (1999) Synergistic photosensitization of phenylpropanedione with camphorquinone. Journal of dental research, 78: 372
55. Park YJ, Rawls HR. (1998) 1-phenyl-1,2-propanedione as a dental resin photoinitiator. Journal of dental research, 77: 129
56. Peutzfeldt A, Sahaf A, Asmussen E (2000) Characterization of composites polymerized with plasma arc curing units. Dental materials, 16:330-336.
57. Pilo R, Oelgiesser D, Cardash HS (1999) A survey of output intensity and potential for depth of cure among light-curing units in clinical use. Journal of Dentistry, 27:235-241.
58. Pradhan RD, Melikechi N, Eichmiller F (2002) The effect of irradiation wavelength bandwidth and spot size on the asraping depth and temperature rise in composite exposed to an argon laser or a conventional quartz-tungsten-halogen source. Dental materials, 18: 221-226
59. Prati C, Chersoni S, Montebugnoli L, Montanari G (1999) Effect of air, dentin and resin-based composite thickness on light intensity reduction. American Journal of dentistry, 12: 231-234
60. Price RB, Bannerman RA, Rizkalla AS, Hall GC (2000) Effect of stepped vs. continuous light curing exposure on bond strengths dentin. American journal of dentistry, 13:123-128
61. Price RB, Murphy DG, Derand T (2000) Light energy transmission through cured resin composite and human dentin. Quintessence International, 31: 659-667
62. Price RB, Rizkalla AS, Hall GC. (2000) Effect of stepped light exposure on the volumetric polymerization shrinkage and bulk modulus of dental composites and an unfilled resin. American journal of dentistry, 13: 176-180
63. Rueggeberg F. Contemporary issues in photocuring. (1999) [Journal Article] Compendium of Continuing Education in Dentistry. Supplement. (25):S4-15; quiz S73, Nov
64. Rueggeberg FA , Caughman WF & Curits JW (1994) Effect of light intensity and exposure duration on cure of resin composite. Operative Dentistry 19(1) 26 ~ 32
65. Rueggeberg FA & Craig RG (1988) Correlation of parameters used to estimate monomer conversion in a light-cured composite. Journal of Dental Research 67(6) 932 ~ 937
66. Sakaguchi RL, Berge HX (1998) Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. Journal of dentistry, 26: 695-700
67. Sakaguchi RL, Versluis A, Douglas WH (1997) Analysis of strain gauge method for measurement of post-gel shrinkage in resin composites. Dental materials, 13: 233-239
68. Sharkey S, Ray N, Burke F, Ziada H, Hannigan A (2001) Surface hardness of light-activated resin composites cured by two different visible-light sources: An in vitro study. Quintessence International, 32: 401-405
69. Shortall AC. Harrington E. Wilson HJ. (1995) Light curing unit effectiveness assessed by dental radiometers. [Journal Article] Journal of Dentistry. 23(4):227-32, 1995 Aug.
70. Stahl F, Ashworth SH, Jandt KD, Mills RW. (2000) Light-emitting diode (LED) polymerization of dental composites: flexural properties and polymerization potential. Biomaterials, 21: 1379-1385
71. S. Imazato , H. Tarumi , K. Kobayashi , H. Hiraguri , K. Oda , Y. Tsuchitani , Relationship between the degree of conversion and internal discoloration of light-activated composite , Dental Mater. J. 14 (1995) 23-30
72. Taira M, Urabe T, Hirose T, Wakasa K, Yamaki M. (1988) Analysis of photo-initiators in visible-light-cured dental composite resins. Journal of dental research, 67: 24-28
73. Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G, Davidson CL. (1998) The effect of the photopolymerization method on the quality of composite resin samples. Journal of Oral Rehabilitation, 25: 436-442
74. Tassery H, Donato P, Barres O, Dejou J. (2001) In vitro assessment of polymerization procedures in class II restorations: sealing, FTIR, and microhardness evaluations. Journal of Adhesive Dentistry, 3: 247-255
75. Tate WH. Porter KH. Dosch RO. (1999) Successful photocuring: don't restore without it. [Review] [31 refs] [Journal Article. Review. Review, Tutorial] Operative Dentistry. 24(2):109-14, 1999 Mar-Apr.
76. Tay FR, King NM, Suh BI, Pashley DH (2001) Effect of delayed activation of light-cured resin composites on bonding of all-in-one adhesives. Journal of Adhesive Dentistry, 3: 207-225
77. Vargas MA, Cobb DS, Schmit JL. (1998) Polymerization of composite resin: Argon laser vs conventional light. Operative Dentistry, 23: 87-93
78. Watts D.C. , Cash A. J. Analysis of optical transmission by 400 — 500 nm visible light into aesthetic dental biomaterials. Journal of Dentistry 1994;22:112 — 117
79. Watts DC, Hindi A Al. (1999) Intrinsic ‘soft-start’ polymerization shrinkage-kinetics in an acrylate-based resin-composite. Dental materials, 15:39-45.
80. Yap AUJ, Ng SC, Siow KS. (2001) Soft-start polymerization: Influence on effectiveness of cure and post-gel shrinkage. Operative Dentistry, 26: 260-266
81. Yap AUJ, Seneviratne C. (2001) Influence of light energy density on effectiveness of cmposite cure. Operative Dentistry, 26: 460-466
82. Yap AUJ, Soh MS, Siow KS. (2002a) Post-gel shrinkage with pulse activation and soft-start polymerization. Operative Dentistry, 27: 81-87
83. Yap AUJ, Soh MS, Siow KS. (2002b) Effectiveness of composite cure with pulse activation and soft-start polymerization. Operative Dentistry, 27: 44-49
84. Y. —J. Park , K. —H. Chae , H.R. Rawls. (1999) Development of a new photoinitiation system for dental light-cure composite resins , Dental Materials ; 15 : 120 ~ 127
85. Yoon TH. Lee YK. Lim BS. Kim CW. (2002) Degree of polymerization of resin composites by different light sources. [Journal Article] Journal of Oral Rehabilitation. 29(12):1165-73, 2002 Dec.
86. Yoshikawa T, Burrow M F, Tagami J (2001a) A light curing method for improving marginal sealing and cavity wall adaptation of resin composite restorations. Dental materials, 17:359-366
87. Yoshikawa T, Burrow MF, Tagami J (2001b) The effect of bonding system and light curing method on reducing stress of different C-factor cavities. Journal of Adhesive Dentistry, 3:177-183
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文