|
[1] J. K. Udupa, G. T. Herman, “3D Imaging in medicine,” CRC Press, Boca Raton, FL, 2nd Ed, 1999. [2] R. C. Gonzalez, R. E. Woods, “Digital Image Processing,” Prentice Hall, 2002. [3] K. S Fu, J. K. Mui, “A survey on image segmentation,” Pattern Recognition, vol. 13, pp. 3-16, 1981. [4] S. W. Zucker, “Region growing: childhood and adolescence,” Computer Graphics and Image Processing, vol. 5, no. 3, pp. 382-399, 1976. [5] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, 1994. [6] R. K. Justice, E. M. Stokely, J. S. Strobel, R. E. Ideker, W. M. Smith, “Medical image segmentation using 3-D seeded region growing,” Proceedings of SPIE - The International Society for Optical Engineering, 3034: 900-910, 1997. [7] S. Y. Wan, W. Higgins, “Symmetric region growing,” IEEE International Conference on Image Processing (ICIP2000), 10-13, pp. II-439-II-442, 2000, Vancouver, BC, Canada, Sept. [8] S. Y. Wan, C. M. Ma, E. Nung, “Multi-dimensional image segmentation using seed-invariant region growing,” Proceedings of National Computer Symposium 2001, pp. D269-D279, Dec. 20-21, 2001, Taiwan, R.O.C. [9] S. Y. Wan, E. Nung, “Seed-invariant region growing: its properties and applications to 3-D medical CT images,” 2001 IEEE International Conference on Image Processing (ICIP2001), vol. 1, pp. 710-713, Oct. 7-10, 2001, Thessaloniki, Greece. [10] J. Canny, “A computational approach to edge detection,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-696, Nov 1986. [11] A. Martelli, “Edge detection using heuristic search methods,” Computer Graphics and Image Processing, vol. 1, pp. 169-182, 1972. [12] A. X. Falcao, J. K. Udupa, S. Samarasekera and Shoba Sharma, “User-steered image segmentation paradigms: live wire and live lane,” Graphic Models and Image Processing, vol. 60, pp. 233-260, 1998. [13] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognition, vol. 13, pp. 111-122, 1981. [14] E. Gose, R. Johnsonbaugh, S. Jost, “Pattern recognition and image analysis,” Prentice Hall, 1996. [15] L. C. Bezdek, “Pattern recognition with fuzzy objective function algorithm,” New York: Plenum Press, 1981. [16] W. R. Hendee, E. R. Ritenour, “Medical imaging physics,” New York: John Wiley & Sons, 2002. [17] S. U. Le, S. Y. Chung, R. H. Park, “A comparative performance study of several global thresholding techniques for segmentation,” Graphical Models and Image Processing, vol. 52, pp. 171-190, 1990. [18] J. S. Weszka, A. Rosenfeld, “Threshold evaluation techniques,” IEEE Transaction on System Man Cybernetics, SMC-8, no. 8, pp. 627-629, 1978. [19] P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. Chen, “A survey of thresholding techniques,” Computer Vision Graphics Image Processing, vol. 41, pp. 233-260, 1988. [20] C. A. Glasbey, “An analysis of histogram-based thresholding algorithms,” Graphical Models and Image Processing, vol. 55, pp. 532-537, 1993. [21] C. Lee, S. Hun, T. A. Ketter, M. Unser, “Unsupervised connectivity-based thresholding segmentation of midsaggital brain MR images,” Computers in Biology and Medicine, vol. 28, pp. 309-338, 1998. [22] H. D. Li, M. Kallergi, L. P. Clarke, V. K. Jain, R. A. Clark, “Markov random field for tumor detection in digital mammography,” IEEE Transaction on Medical Imaging, vol. 14, pp. 565-576, 1995. [23] E. N. Mortensen, and W. A. Barrett, “Interactive segmentation with intelligent scissors,” Graphical Models and Image Processing, vol. 60, pp. 349-384, 1998. [24] J. Udupa and S. Samarasekera, “Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation,” Graphical Models and Image Processing, vol. 58, no. 3, pp. 246-261, May 1996. [25] S. G. Dellepiane, F. Fontana, G. L. Vernazza, “Nonlinear image labeling for multivalued segmentation,” IEEE Transaction on Image Processing, vol. 5, pp. 429-446, 1996. [26] B. M. Carvalho, C. J. Gau, G. T. Herman, T. Yung Kong, “Algorithms for fuzzy segmentation,” Pattern Analysis & Applications, vol. 2, pp. 73-81, 1999. [27] T. Lei, J. K. Udupa, P. K. Saha , D. Odhner, “Artery-Vein separation via MRA - An image processing approach,” IEEE Transactions on Medical Imaging, vol. 20 no. 8 , pp. 689-703, 2001. [28] J. Liu, J. K. Udupa, D. Odhner, J. M. McDonough, R. Arens, “Upper airway segmentation and measurement in MRI using fuzzy connectedness,” Medical Imaging 2002: Physiology and Function from Multidimensional Images, SPIE Proceedings vol. 4683. [29] T. Lei, J. K. Udupa, P. K. Saha, D. Odhner, R. Baum, S. T. Tadikonda, E. K. Yucel, “3D MRA visualization and artery-vein separation using blood-pool contrast agent MS-325,” Academic Radiology, 9, S127-S133, 2002. [30] C. Imielinska, D. Metaxas, J. Udupa, Y. Jin, T. Chen, “Hybrid segmentation of the visible human data,” Visible Human Project Conference III, Bethesda MD, October 2000. [31] J. C. Bezdek, S. K. Pal, “Fuzzy models for pattern recognition: methods that search for structures in data,” New York: Institute of Electrical and Electronics Engineers, 1992. [32] J. C. Bezdek, J. Keller, R. Krishnapuram, N. R. Pal, “Fuzzy Models and algorithms for pattern recognition and image processing,” Kluwer, Boston, 1999. [33] T. H. Cormen, C. E. Leiserson,R. L. Rivest, “Introduction to algorithms,” The MIT Press, 1990. [34] N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Transaction on System Man Cybernetics, vol. SMC-9, no. 1, pp. 62-66, 1979. [35] A. Kaufmann, “Introduction to the theory of fuzzy subsets fundamental theoretical elements,” Academic Press, New York, vol. 1, 1975. [36] A. Rosenfeld, “The fuzzy geometry of image subsets,” Pattern Recognition Letter, vol. 2, pp. 311-317, 1984. [37] A. Rosenfeld, S. Haber, “The perimeter of a fuzzy set,” Pattern Recognition, vol. 18, pp. 47-50, 1984. [38] A. Rosenfeld, “The diameter of a fuzzy set,” Fuzzy sets and systems, vol. 13, pp. 241-246, 1984. [39] A. De Luca, S. Termini, “A definition of non probabilistic entropy in the setting of fuzzy sets theory,” Information and Control System, vol. 20, pp. 301-312, May 1972. [40] http://www.bic.mni.mcgill.ca/brainweb/. [41] C. A. Cocosco, V. Kollokian, R. K. S. Kwan, A. C. Evans, “BrainWeb: online interface to a 3D MRI simulated brain database,” NeuroImage, Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, Copenhagen, vol. 5, no. 4, part 2/4, S425, May 1997. [42] R. K. S. Kwan, A. C. Evans, G. B. Pike, “MRI simulation-based evaluation of image-processing and classification methods,” IEEE Transactions on Medical Imaging, vol. 18, no. 11, pp. 1085-97, Nov 1999. [43] R. K. S. Kwan, A. C. Evans, G. B. Pike, “An extensible MRI simulator for post-processing evaluation,” Visualization in Biomedical Computing (VBC''96), Lecture Notes in Computer Science, Springer-Verlag, vol. 1131, pp. 135-140, 1996. [44] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, A. C. Evans, “Design and construction of a realistic digital brain phantom,” IEEE Transactions on Medical Imaging, vol. 17, no. 3, pp. 463-468, June 1998. [45] L. A. Zadeh, “Fuzzy sets and their applications to cognitive and decision processes,” Academic Press, London, 1975. [46] L. K. Huang, M. J. Wang, “Image thresholding by minimizing the measure of fuzziness,” Pattern Recognition, vol. 28, no. 1, pp. 41-51, 1995.
|