跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳承德
研究生(外文):Cheng-De Wu
論文名稱:氧化鈰與氧化鉻共添加對鍶鋇鈮陶瓷結構與介電性質之影響
論文名稱(外文):Effects of Ceria and Chromia Co-Doped on the Crystalline Structure and Dielectric Properties of Strontium Barium Niobate Ceramics
指導教授:向性一
指導教授(外文):Hsing-I Hsiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:96
中文關鍵詞:鍶鋇鈮結構介電
外文關鍵詞:crystalline structureSBNdielectric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
鍶鋇鈮陶瓷是一種很好的透光材料,已可應用於工業上。雖然鍶鋇鈮單晶已被廣泛的研究,但因高價格與製造困難,實際的應用被限制住。一個陶瓷的高密度和均勻微結構,對光學應用上是極大的須求。因此開發鍶鋇鈮多晶陶瓷是必然趨勢。
在鍶鋇鈮陶瓷中共添加Ce2O3、Cr2O3,探討其結構與介電性質。隨添加量上升,晶格常數a軸拉長,c軸縮。在介電性質,Ce2O3、Cr2O3添加量增加,Tmax與εmax遞減,為SBN中NbO6八面體結構的改變。利用電滯曲線求出殘留極化量,得知隨添加量增加,殘留極化量減少,和εmax變化行為相同。
Strontium barium niobate ( SBN ) ceramic is a good electro-optic material and has been widely used. Although SBN single crystals could be used in wide applications, high cost and difficult fabrication have limited its practical use. For optical applications, a ceramic with almost full density and uniform microstructure is greatly desired.
Strontium barium niobate co-doped Ce2O3、Cr2O3 is investigated into the crystalline structure and the dielectric properties. Due to the increase of the quantity of the additive, the a axis is increased, but the c axis is decreased. In the dielectric properties, Tmax and εmax decreased with the increase of the content of Ce2O3、Cr2O3, which is essentially determined by the structural change of the NbO6 units in SBN. The remanent polarization is studied by the Hysteresis loop. Due to the increase of the quantity of the additive, decrease the remanent polarization.
目錄
摘要.....................................................Ⅰ
Abstract.................................................Ⅱ
誌謝.....................................................Ⅲ
目錄.....................................................Ⅳ
表目錄...................................................Ⅶ
圖目錄...................................................Ⅷ
第一章 緒論.............................................1
1-1 前言...........................................1
1-2 研究目的.........................................2
第二章 文獻回顧與理論基礎...............................3
2-1 SBN結構..............................................3
2-2 陶瓷製程與燒結......................................11
2-2-1 粉末顆粒大小對於生胚結構的影響....................11
2-2-2 燒結..............................................16
2-2-3 擴散性相變化(Difuse phase transition, DPT)........26
2-3 SBN的陶瓷製程.......................................29
2-3-1 SBN合成機構.....................................29
2-3-2 SN與BN合成SBN的反應機構模型.....................29
2-4 SBN性質.............................................32
2-4-1 介電基本原理....................................32
2-4-2 鍶鋇鈮介電性質..................................35
2-4-3 鐵電性質........................................44
第三章 實驗方法及步驟...................................48
3-1 實驗藥品............................................48
3-2 粉末與試片製備......................................48
3-3 性質的量測..........................................50
3-3-1 X-ray繞射分析...................................50
3-3-2 密度量測........................................50
3-3-3 介電常數對溫度關係的量測........................51
3-3-4 P-E曲線量測.....................................51
第四章 結果與討論.......................................53
4-1 X-ray繞射分析.......................................53
4-2 介電性質............................................56
4-2-1 介電常數量測....................................56
4-2-2 Fitting to modified Curie-Weiss law..............64
4-2-3 Vogel-Fulcher relationship.......................64
4-3 P-E曲線.............................................78
第五章 結論.............................................89
第六章 參考文獻.........................................90
表目錄
表2-1 不同組成的SBN陶瓷之晶格常數與密度表...............10
表2-2 各種鎢青銅結構的材料其介電常數峰值的溫度, Tmax和沿著正方a軸極化組成開始之溫度...............................38
表4-1 Sr0.5Ba0.5Nb2O6及共添加0.5、1、1.5、2mol%Ce2O3、Cr2O3經1300℃燒結持溫6小時的理論密度.....................55
表4-2 S50於不同添加量在各頻率的γ值......................74
表4-3 S50於不同添加量Vogel-Fulcher relation參數整理.....77
圖目錄
圖2-1 SBN在(001)平面的投影圖.............................5
圖2-2 SBN之鎢青銅結構中,各離子之配位結構(a) NbO6八面體B1結構(b) Nb6八面體之B2結構..............................7
續圖2-2(c) Sr在A1位置的配位結構(d) Sr/Ba在A2位置的配位結構(e) C位置的配位結構.....................................8
圖2-3 SBN相圖............................................9
圖2-4 單一尺寸球形粒子之單層推積,顯示會有一些缺陷存在..14
圖2-5 當壓力存在時,孔隙由平衡轉變成類似裂縫之示意圖....15
圖2-6 以熱壓法製造Sr0.5Ba0.5Nb2O6陶瓷的顯微結構(a) 平行壓力的面(b) 垂直壓力的面.....................................18
圖2-7 燒結初期的各種物質傳輸路徑........................19
圖2-8 (a) 顆粒之間互相接觸,(b) 最初燒結階段,(c) 中期燒結階段,(d) 後期燒結階段..................................23
圖2-9 具相同體積及二面角但不同配位數(a) n>nC,(b) n>nC之孔隙率,顯示在相同孔隙體積時,包圍在孔隙四周的晶粒愈大則其配位數愈小。............................................24
圖2-10 來不即消失就被晶粒所吞噬之孔隙...................25
圖2-11 形成SBN反應模型之示意圖,(a) 胚體粉末堆積情形,其排列的堆積情形由所配置的組成決定,(b) 反應初期,Sr和Ba離子藉由表面擴散於SN或BN粉末顆粒表面覆蓋一層所配組成的Sr/Ba比例之離子(c) 於每一粉末顆粒表面直接反應行程所配組成的SBN殼,然後Sr再和Ba離子再經由步驟(b)並通過所形成的SBN殼繼續反應.....31
圖2-12 SBN結構中,各離子偏移及極化方向示意圖............36
圖2-13 低溫下SBN a面介電性質的熱不規則現象..............37
圖2-14 在TP溫度以下沿著單斜晶胞中的a軸方向PS發生的可能模型(a)在正方結構中,PS從c軸朝[110]方向作一小角度傾斜.......39
圖2-15 不同組成SBN單晶在1KHz下,介電常數(k)隨溫度的變化....42
圖2-16 不同組成SBN多晶在1KHz下,介電常數(k)隨溫度的變化....43
圖2-17 磁滯曲線.........................................46
圖2-18 Sawyer - Tower 電路圖............................47
圖3-1 實驗流程圖........................................52
圖4-1 Sr0.5Ba0.5Nb2O6及共添加0.5、1、1.5、2mol%Ce2O3、Cr2O3經1250℃煆燒持溫4小時的XRD..........................54
圖4-2 Sr0.5Ba0.5Nb2O6及共添加0.5、1、1.5、2mol%Ce2O3、Cr2O3經1250℃煆燒持溫4小時的晶格常數.....................55
圖4-3(a) undoped SBN50不同頻率的介電常數對溫度的變化圖.....58
圖4-3(b) undoped SBN50不同頻率的介電損失值對溫度的變化圖...58
圖4-4(a) doped 0.5%(Ce,Cr) SBN50不同頻率的介電常數對溫度的變化圖..............................................59
圖4-4(b) doped 0.5%(Ce,Cr) SBN50不同頻率的介電損失值對溫度的變化圖............................................59
圖4-5(a) doped 1%(Ce,Cr) SBN50不同頻率的介電常數對溫度的變化圖................................................60
圖4-5(b) doped 1%(Ce,Cr) SBN50不同頻率的介電損失值對溫度的變化圖..............................................60
圖4-6(a) doped 1.5%(Ce,Cr) SBN50不同頻率的介電常數對溫度的變化圖..............................................61
圖4-6(b) doped 1.5%(Ce,Cr) SBN50不同頻率的介電損失值對溫度的變化圖............................................61
圖4-7(a) doped 2%(Ce,Cr) SBN50不同頻率的介電常數對溫度的變化圖................................................62
圖4-7(b) doped 2%(Ce,Cr) SBN50不同頻率的介電損失值對溫度的變化圖..............................................62
圖4-8(a) SBN50同時添加不同計量Ce2O3、Cr2O3的介電常數對溫度的變化圖............................................63
圖4-8(b) SBN50同時添加不同計量Ce2O3、Cr2O3的介電損失值對溫度的變化圖..........................................63
圖4-9(a) 0.5(Ce,Cr)S50在1000Hz介電溫度圖做modified Cuie-Weiss fitting...........................................66
圖4-9(b) 0.5(Ce,Cr)S50在10000Hz介電溫度圖做modified Cuie-Weiss fitting.................................66
圖4-9(c) 0.5(Ce,Cr)S50在100000Hz介電溫度圖做modified Cuie-Weiss fitting.................................67
圖4-9(d) 0.5(Ce,Cr)S50在1000000Hz介電溫度圖做modified Cuie-Weiss fitting.................................67
圖4-10(a) 1(Ce,Cr)S50在1000Hz介電溫度圖做modified Cuie-Weiss fitting...........................................68
圖4-10(b) 1(Ce,Cr)S50在10000Hz介電溫度圖做modified Cuie-Weiss fitting...........................................68
圖4-10(c) 1(Ce,Cr)S50在100000Hz介電溫度圖做modified Cuie-Weiss fitting................................69
圖4-10(d) 1(Ce,Cr)S50在1000000Hz介電溫度圖做modified Cuie-Weiss fitting.................................69
圖4-11(a) 1.5(Ce,Cr)S50在1000Hz介電溫度圖做modified Cuie-Weiss fitting.................................70
圖4-11(b) 1.5(Ce,Cr)S50在10000Hz介電溫度圖做modified Cuie-Weiss fitting.................................70
圖4-11(c) 1.5(Ce,Cr)S50在100000Hz介電溫度圖做modified Cuie-Weiss fitting.................................71
圖4-11(d) 1.5(Ce,Cr)S50在1000000Hz介電溫度圖做modified Cuie-Weiss fitting.................................71
圖4-12(a) 2(Ce,Cr)S50在1000Hz介電溫度圖做modified Cuie-Weiss fitting...........................................72
圖4-12(b) 2(Ce,Cr)S50在10000Hz介電溫度圖做modified Cuie-Weiss fitting...........................................72
圖4-12(c) 2(Ce,Cr)S50在100000Hz介電溫度圖做modified Cuie-Weiss fitting.................................73
圖4-12(d) 2(Ce,Cr)S50在1000000Hz介電溫度圖做modified Cuie-Weiss fitting.................................73
圖4-13 0.5(Ce,Cr)S50之Vogel-Fulcher relation圖..........75
圖4-14 1(Ce,Cr)S50之Vogel-Fulcher relation圖............75
圖4-15 1.5(Ce,Cr)S50之Vogel-Fulcher relation圖..........76
圖4-16 2(Ce,Cr)S50之Vogel-Fulcher relation圖............76
圖4-17 (a) S50在室溫下,最大電場為4kV/cm,頻率10-1~102Hz的P-E圖................................................80
圖4-17 (b) S50在室溫下,最大電場為4.5kV/cm,頻率10-1~102Hz的P-E圖.............................................80
圖4-17 (c) S50在室溫下,最大電場為5kV/cm,頻率10-1~102Hz的P-E圖................................................81
圖4-17 (d) S50在室溫下,最大電場為5.5kV/cm,頻率10-1~102Hz的P-E圖.............................................81
圖4-18 (a)0.5(Ce,Cr)S50在室溫下,最大電場為4kV/cm,頻率10-1~102Hz的P-E圖..................................82
圖4-18 (b)0.5(Ce,Cr)S50在室溫下,最大電場為4.5kV/cm,頻率10-1~102Hz的P-E圖..................................82
圖4-18 (c)0.5(Ce,Cr)S50在室溫下,最大電場為5kV/cm,頻率10-1~102Hz的P-E圖..................................83
圖4-18 (d)0.5(Ce,Cr)S50在室溫下,最大電場為5.5kV/cm,頻率10-1~102Hz的P-E圖..................................83
圖4-19 (a)1(Ce,Cr)S50在室溫下,最大電場為4kV/cm,頻率10-1~102Hz的P-E圖...........................................84
圖4-19 (b)1(Ce,Cr)S50在室溫下,最大電場為4.5kV/cm,頻率10-1~102Hz的P-E圖..................................84
圖4-19 (c)1(Ce,Cr)S50在室溫下,最大電場為5kV/cm,頻率10-1~102Hz的P-E圖...........................................85
圖4-19 (d)1(Ce,Cr)S50在室溫下,最大電場為5.5kV/cm,頻率10-1~102Hz的P-E圖..................................85
圖4-20 (a)不同添加量的S50在室溫下,電場4kV/cm,頻率10-1~102的殘留極化值......................................86
圖4-20 (b)不同添加量的S50在室溫下,電場4.5kV/cm,頻率10-1~102的殘留極化值......................................86
圖4-20 (c)不同添加量的S50在室溫下,電場5kV/cm,頻率10-1~102的殘留極化值......................................87
圖4-20 (d)不同添加量的S50在室溫下,電場5.5kV/cm,頻率10-1~102的殘留極化值......................................87
圖4-21 殘留極化值(Pr)與介電常數最大值(εmax)對不同添加量的變化圖................................................88
1. P. B. Jamieson. S. S. Abrahams and J. L. Bernstein,“Ferroelectric Tungsten Bronze- Type Crystal Structure. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78,”J. Chem. Phys., 48, 5048 (1968).
2. A. M. Glass,” Investigation of the Electrical Properties of Sr1-XBaXNb2O6 with Special Reference to Pyroelectric Detection,” J. Appl. Phys., 40, 4699-4713 (1969).
3. J. Wingbermuhle, M. Meyer, O. F. Schirmer, R. Pankrath, and R. K. Kremer,” Electron Paramagnetic Resonance of Ce3+ in Strontium Barium Niobate,” J. Phys.: Condens. Matter, 12, 4277-4284 (2000).
4. J. R. Carruther and M. Grasso,” Phase Equilibria Relations in the Ternary System BaO-SrO-Nb2O5,” J. Electrochem. Soc., 117, 1426 (1970).
5. P. B. Jamieson. S. S. Abrahams and J. L. Bernstein, “Ferroelectric Tungsten Bronze- Type Crystal Structure. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78,”J. Chem. Phys., 48, 5048 (1968).
6. M. P. Trubelja, E. Ryba, D. K. Smith,” A study of Positional disorder in Strontium Barium Niobate,” J. Mater. Sci. 31, 1435-1443, (1996).
7. R. C. Baetzold,” Calculations of Defect Properties Important in Photorefractive Sr0.6Ba0.4Nb2O6,” Phas. Rev. B, [48], 9, 5789-5796, (1993).
8. N. S. Vandamme, A. E. Sutherland, L. Jones, K. Bridger, and S. R. Winzer, “Fabrication of Optically Transparent and Electrooptic Strontium Barium Niobate Ceramics,” J. Am. Ceram. Soc., 74 [8] 1785 (1991).
9. Jyh-Tzong Shiue, “Reaction kinetics, Sintering Behavior, and Dielectric Properties of Ceria-Doped Strontium Barium Niobate Ceramics,博士論文, 國立成功大學, 2003.
10. M. N. Rahaman,” Ceramic Processing and Sintering”.
11. Eric Liniger and Rishi Raj, “Packing and Sintering of Two-Dimensional Structures Made from Bimodal Particle Size Distributions,” J. Am. Ceram. Soc., 70 [11] 843-849 (1987).
12. A. G. Evans, “Considerations of Inhomogeneity Effects in Sintering,” J. Am. Ceram. Soc., 65 [10] 497-501 (1982).
13. K. Nagata, Y. Yamamoto, H. Igarashi, and K. Okazaki, “Properties of the hot-pressed strontium barium niobate ceramics”Ferroelectrics 38, 853 (1981).
14. S. I. Lee and W. K. Choo, “Modified ferroelectric high density strontium barium niobate ceramics for pyroelectric applications”Ferroelectrics 87, 209 (1988).
15. R. L. Coble, J. Appl. Phys., 32, 787 (1961).
16. Junhong Zhao and Martin P. Harmer,” Effect of Pore Distribution on Microstructure Development: II, First- and Second-Generation Pores,” J. Am. Ceram. Soc., 71 [7] 530-539 (1988).
17. Ru-Yuan Yang, “A Study on the Core-Shell Structure of Pb(Fe2/3W1/3)O3”, 碩士論文, 國立中山大學, 2000.
18. S. B. Deshpande, H. S. Potdar, P. D. Godbole, and S. K. Date,” Preparation and Ferroelectric Properties of SBN: 50,” J. Am. Ceram. Soc., 75[9],2581 (1992).
19. S. Hirano, T. Yogo, K. Kikuta, and K. Ogiso,” Preparation of Strontium Barium Niobate by Sol-Gel Method,” J. Am. Ceram. Soc., 75[6] 1697-1700 (1992).
20. 李文景,博士論文,國立成功大學,1997。
21. W. D. Kingery, H. K. Bowen, D. R. Uhlmann,“Introduction to Ceramics”, 2nd Edition, John Wiley&Sons, New York(1976).
22. Yuhuan Xu, Zhongrong Li, Wu Li, and Hong Wang,” Phase Transition of Some Ferroelectric Niobate Crystals with Tungsten-Bronze Structure at Low Temperatures,” Phys. Rev. B, [40] 11902-11908, (1989).
23. J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc and R. Pankrath,” Random-field Ising-type Transition of Pure and Doped SBN from the Relaxor into the Ferroelectric State,” Europhys. Lett., 55(6) 781-787 (2001).
24. L. A. Bursill and Peng Ju Lin,” Chaotic States Observed in Strontium Barium Niobate,” Philosophical Magazine B, 54[2] 157-170 (1986).
25. A. A. Ballman and H. Brown,” The Growth and Property of Sr1-XBaXNb2O6, A Tungsten Bronze Ferroelectric,” J. Cryst. Growth 1, 311 (1967).
26. L. E. Cross, Feroelectrics “Relaxor ferroelectrics”76, 241 (1987).
27. G. A. Smolensky and A. I. Agrenovuskaya, Sov. Phys. Solid State 1, 1429 (1959).
28. C. A. Randall and A. S. Bhalla, “Nanostructural-Property Relations in Complex Lead Perovskites”Jpn. J. Appl. Phys., 29[2], 327 (1990).
29. L. Y. Cai, X. W. Zhang, and X. R. Wang, “Hrem study of ordered and disordered structures in Pb(Sc0.5Ta0.5)O3”Mater. Lett., 20, 169 (1994).
30. R. Guo, A. S. Bhalla, C. A. Randall, and L. E. Cross, “Dielectric and pyroelectric properties of morphotropic phase boundary lead barium niobate (PBN) single crystals at low temperature (10-300K)”J. Appl. Phys. 67[10], 6405 (1990).
31. G. Bruns and F. H. Dacol, “Ferroelectrics with a glassy polarization phase”Ferroelectrics 104, 25 (1990).
32. A. S. Bhalla, R. Guo, L. E. Cross, G. Burns, F. H. Dacol, and R. R. Neurgaonkar, “Glassy polarization in the ferroelectric tungsten bronze (Ba,Sr)Nb2O6”J. Appl. Phy., 71[11], 5591 (1992).
33. X, Xiao, Y. Xu, Z. Zeng, Z. Gui, L. Li, and X. Zhang, “Effect of A-site vacancy order-disorder states on diffuse phase transition of the morphotropic phase boundary Pb1-xBaxNb2O6 ferroelectrics”J. Mater. Res., 11[9], 2302 (1996).
34. T. Woike, U. Dorfler, L. Tsankov, G. Weckwerth, D. Wolf, M. Wohlecke, T. Granzow, R. Pankrath, M. Imlau, W. Kleemann,” Photorefractive Properties of Cr-doped Sr0.61Ba0.39Nb2O6 Related to Crystal Purity and Doping Concentration,” Appl. Phys. B 72, 661-666, (2001).
35. Th. Woike, G. Weckwerth, H. Palme, and r. Pankrath, ”Instrumental Neutron Activation and Absorption Spectroscopy of Photorefractive Strontium-Barium Niobate Single Crystals Doped with Cerium,” Solid State Commun, 102,743-747, (1997); INAA of SBN: Cr, Th. Woike, private communication.
36. Fang TT, and Chen FY, “The defect structure, sintering behavior, and dielectric responses of Cr2O3-doped Sr0.5Ba0.5Nb2O6” J. Appl. Phys., 100[1], 014110 (2006).
37. Shiue JT, and Fang TT, “The sintering behavior of CeO2-doped strontium barium niobate ceramics” J. Eur. Ceram. Soc., 22[9-10], 1705-1709 (2002).
38. 陳鳳瑜,碩士論文,國立成功大學,2005
39. T. Granzow, U. Dorfler, and Th. Woike,” Influence of Pinning Effects on the Ferroelectric Hysteresis in Cerium-doped Sr0.61Ba0.39Nb2O6,” Phys. Rev. B, 63, 174101-1~7, (2001).
40. A. K. Tagantsev, “Vogel-Fulcher Relationship for the Dielectric Permittivity of Relaxor Ferroelectric” Phy. Rev. Lat., 72[7], 1100 (1994).
41. I. A. Santos, D. U. Spinola, D. Garcia and J. A. Eiras, “Dielectric behavior and diffase phase transition features of rare earth doped Sr0.61Ba0.39Nb2O6 ferroelectric Ceramics” J. Appl. Phys., 92[6], 3251 (2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top