|
[1] H. Friedrich and S. Schumann “Research for a new age of magnesium in the automotive industry” Journal of Materials Processing Technology 117, pp.276-281 (2001). [2] G.E. Dieter, “Mechanical Metallurgy”, McGraw-Hill Inc., New York. (1998) [3] W.Y. Fowlkes and C.M. Creveling, “Engineering methods for robust product design : using Taguchi methods in technology and product development”, Addision-Wesley, Reading, Massachusetts (1995). [4] J.A. Freeman and D.M. Skapura, “Neural networks : algoithms, applications, and programming techniques”, Addision-Wesley, Reading, Massachusetts (1991). [5] Patrick Ulysse and Robert E. Johnson, “A die design model for thin section extrusions”, International Journal of Mechanical Sciences, Vol.41, pp.1067-1088 (1999). [6] Y.T. Kim, K. Ikeda and T. Murakami, “Metal flow in porthole die extrusion of aluminium”, Journal of Materials Processing Technology, Vol.121, pp.107-115 (2002). [7] Y.-H. Frank Su, C.-S. Sam Chiang and Chi Y.A. Taso, “Extrusion characteristics of spray-formed AC9A aluminum alloy”, Materials Science and Engineering A, Vol.364, pp.305-312 (2004). [8] H.R. Darani and M. Ketabchi, “Simulation of L section extrusion using upper bound method”, Materials and Design, Vol.25, pp.535-540 (2004). [9] M. Bakhshi-Jooybari, “A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process”, Journal of Materials Processing Technology, Vol.125-126, pp.369-374 (2002). [10] K.Y. Rhee, W.Y. Han, H.J. Park and S.S. Kim, “Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its materials characteristics”, Materials Science and Engineering A, Vol.384, pp.70-76 (2004). [11] H.J. Park, K.H. Na, N.S. Cho, Y.S. Lee and S.W. Kim, “A study of the hydrostatic extrusion of copper-clad aluminum tube”, Journal of Materials processing Technology, Vol.67, pp.24-28 (1997). [12] I.N. Chou and C.H. Hung, “The finite-element study on extrusion of powder/solid composite clad rods”, Journal of Materials Processing Technology, Vol.96, pp.124-132 (1999). [13] C. Kaya and S. Blackburn, “Extrusion of ceramic tubes with complex structures of non-uniform curvatures made from nano-powders”, Journal of the European Ceramic Society, Vol.24, pp.3663-3670 (2004). [14] Tsutomu Murai, Shin-ichi Matsuoka, Susumu Miyamoto and Yoshinari Oki, “Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions”, Journal of Materials Processing Technology, Vol.141, pp.207-212 (2003). [15] M. Chandrasekaran and Y.M.S. John, “Effect of materials and temperature on the forward extrusion of magnesium alloys”, Materials Science and Engineering A, Vol.381, pp.308-319 (2004). [16] J.Y. Jeng, Y.S. Wong and C.T. Ho, “Over-curing reduction of parts fabricated by the solid laser-diode plotter rapid prototyping system using the Taguchi method”, International Journal of Advanced Manufacturing Technology, Vol.18, pp.683-691 (2001). [17] G.P. Syrcos, “Die casting process optimization using Taguchi methods”, Journal of Materials Processing Technology, Vol.135, pp.68-74 (2003). [18] D.C. Ko, D.H. Kim and B.M. Kim, “Application of artificial neural network and Taguchi method to perform design in metal forming considering workability”, International Journal of Machine Tools & Manufacture, Vol.39, pp.771-785 (1999). [19] K.M. Tsai and P.J. Wang, “Semi-empirical model of surface finish on electrical discharge machining”, International Journal of Machine Tools & Manufacture, Vol.41, pp.1455-1477 (2001). [20] J.P. Davim, “An experimental study of the tribological behaviour of the brass/stell pair”, Journal of Material Processing Technology, Vol.100, pp.273-277 (2000). [21] S.S. Joshi, N. Ramakrishnan, H.E. Nagarwalla and P. Ramakrishnan, “Wear of rotary carbide tools in machining of Al/SiCp composites”, Wear, Vol.230, pp.124-132 (1999). [22] J.P. Davim, N. Marques and A.M. Baptista, “Effect of carbon fiber reinforcement in the frictional behaviour of Peek in a water lubricated environment”, Wear, Vol.251, pp.1100-1104 (2001). [23] T.Y. Lin and C.H. Tseng, “Optimum design for artificial neural networks: an example in a bicycle derailleur system”, Engineering Application of Artificial Intelligence, Vol.13, pp.3-14 (2000). [24] R.S. Chen, H.C. Lin and C. Kung, “Optimal dimension of PQFP by using Taguchi method”, Composite Structures, Vol.49, pp.1-8 (2000). [25] S.J. Dowey and A. Matthews, “Taguchi and TQM Quality issues for surface engineered applications”, Surface and Castings Techlology, Vol.110, pp.86-93 (1998). [26] S. Yacout, “Assessment of quality activities using Taguchi’s loss function”, Computers industrial Engineering, Vol.35, pp.229-232 (1998). [27] M. Bounou, S. Lefebvre and X. Dai Do, “Improving the quality of an optimal power flow solution by Taguchi method”, International Journal of Electrical Power & Energy Systems, Vol.17, pp.113-118 (1995). [28] A.R. Khoei, I. Masters and D.T. Gethin, “Design optimisation of aluminium recycling processes using Taguchi technique”, Journal of Materials Processing Technology, Vol.127, pp.96-106 (2002). [29] F.M. Ham, “Principles of Neurocomputing for Science and Engineering”, McGraw Hill, 2001. [30] V. Tandon, H. E1-Mounayri and H. Kishawy, “NC end milling optimization using evolutionary computation”, International Journal of Machine Tools & Manufacture, Vol.42, pp.595-605 (2002). [31] J.F. Briceno, H. E1-Mounayri and S. Mukhopadhyay, “Selecting and artificial neural network for efficient modeling and accurate simulation of the milling process”, International Journal Tools & Manufacture, Vol.42, pp.663-674 (2002).
[32] P.G. Benardos and G.C. Vosniakos, “Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments”, Robotics and Computer Integrated Manufacturing, Vol.18, pp.343-354 (2002). [33] R.P. Cherian, L.N. Smith and P.S. Midha, “A neural network approach for selection of powder metallurgy materials and process parameters”, Journal of Artificial Intelligence Engineering, Vol.14, pp.39-44 (2000). [34] D.H. Kim, D.J. Kim and B.M. Kim, “The application of neural networks and statistical methods to process design in metal forming processes”, The international Journal of Advanced Manufacturing Technology, Vol.15, pp.889-894 (1999). [35] M. Inamdar, P.P. Date, K. Narasimhan, S.K. Maiti and U.P. Singh, “Development of an artificial neural network to predict springback in air vee benging”, The international Journal of Advanced Manufacturing Technology, Vol.16, pp.376-381 (2000). [36] R. Pilani, K. Narasimhan, S.K. Maiti, U.P. Singh and P.P. Date, “A hybrid intelligent systems approach for die design in sheet metal forming”, The international Journal of Advanced Manufacturing Technology, Vol.16, pp.370-375 (2000). [37] Y.Y. Li and J. Bridgwater, “Prediction of extrusion pressure using an artificial neural network”, Power Technology, Vol.108, pp.65-73 (2000). [38] R.K. Jain, V.K. Jain and P.K. Kalra, “Modeling of abrasive flow machining process : a neural network approach”, Wear, Vol.213, pp.242-248 (1999). [39] J.C. Lin, “Prediction of rolling force and deformation in three-dimensional cold rolling by using the finite-element method and a neural network”, International Journal of Advanced Manufacturing Technology, Vol.20, pp.799-806 (2002). [40] J.S. Gunasekera, Z. Jia, J.C. Malas and L. Rabelo, “Development of a neural network model for a cold rolling”, Engineering Application of Artificial Intelligence, Vol.11, pp.597-603 (1998). [41] J.Y. Jeng, T.F. Mau and S.M. Leu, “Prediction of laser butt joint welding parameters using back propagation and learning vector quantization networks”, Journal of Materials Processing Technology, Vol.99, pp.207-218 (2000). [42] T.Y. Lin and C.H. Tseng, “Optimum design for artificial neural networks: an example in a bicycle derailleur system”, Engineering Application of Artificial Intelligence, Vol.13, pp.3-14 (2000). [43] I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, and T.M. Pollock, “Microstructural characterization of a die-cast magnesium-rare earth alloy”, Scripta Materialia, Vol.45, pp.1423-1429 (2001). [44] Louis Braun, “Casting of magnesium alloys on hot and cold chamber die casting machines”, International Magnesium Conference in Taipei ,R.O.C., pp.153-169 (2001). [45] G. song, A. Atrens and M. Dargusch, “Influence of microstructure on the corrosion of diecast AZ91D”, Corrosion Science, Vol.41, pp.249-273 (1999). [46] S. Kleiner, O. Beffort and P.J. Uggowitzer, “Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state”, Scripta Materialia, Vol.51, pp.405-410 (2004). [47] F. Czerwinski, “Magnesium alloy particulates for Thixomolding applications manufactured by rapid solidification”, Materials Science and Engineering A, Vol.367, pp.261-271 (2004). [48] Z. Koren, H. Rosenson, E.M. Gutman, Ya.B. Unigovski and A. Elieze, “Development of semisolid casting for AZ91 and AM50 magnesium alloys”, Journal of Light Metals, Vol.2, pp.81-87 (2002). [49] M.T. Pérez-Prado, J.A. del Valle and O.A. Ruano, “Effect of shet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling”, Scripta Materialia, Vol.50, pp.667-671 (2004). [50] T.C. Chang, J.Y. Wang, C.M. O and S. Lee, “Grain refining of magnesium alloy AZ31 by rolling”, Journal of Materials Processing Technology, Vol.140, pp.588-591 (2003). [51] J. Bohlen, F. Chmelik, P. Dobroñ and F. Kaiser, “Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31”, Journal of Alloys and Compounds, Vol.378, pp.207-213 (2004). [52] K. Matsubara, Y. Miyahara, Z. Horita and T.G. Langdon, “Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP”, Acta Materialia, Vol.51, pp.3073-3084 (2003). [53] H. Watatnabe, T. Mukai, K. Ishikawa, and K. Higashi, “Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processes by equal-channel-angular extrusion”, Scripta Materialia, Vol46, pp.851-856 (2002). [54] Shoichiro Yoshihara, Hisashi Nishimura, Hirokuni Yamamoto and Ken-ichi Manabe, “Formability enhancement in magnesium alloy stamping using a local heating and cooling technique: circular cup deep drawing process”, Journal of Materials Processing Technology, Vol. 142, pp.609-613 (2003). [55] F.K. Chen, T.B. Huang and C.K. Chang, “Deep drawing of square cups with magnesium alloy AZ31 sheets”, International Journal of Machine Tools & Manufacture, Vol.43, pp.1553-1559 (2003). [56] M. Manoharan, S.C.V. Lim and M. Gupta, “Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process,” Materials Science and Engineering A, Vol.333, pp.243-249 (2002). [57] H. Ferkel and B.L. Mordike, “Magnesium strengthened by SiC nanoparticles”, Materials Science and Engeering A, Vol.298, pp.193-199 (2001). [58] Z.Y. Nan, S. Ishihara, T. Goshima and R. Nakanishi, “Scanning probe microscope observations of fatigue process in magnesium alloy AZ31 near the fatigue limit”, Scripta Materialia, Vol.50, pp.429-434 (2004). [59] F. Czerwinski, “The oxidation behaviour of an AZ91D magnesium alloy at high temperatures”, Acta Materialis, Vol.50, pp.2639-2654 (2002). [60] S.H. Yeo, K.A. Ngoi and C. Hang, “A cost-tolerance model for process sequence optimisation”, International Journal of Advanced Manufacturing Technology, Vol.12, pp.423-431 (1997).
[61] P.J. Ross, “Taguchi Techniques for quality engineering”, McGraw-Hill Inc., 2nd, New York. (1996) [62] 李輝煌,”田口方法:品質設計的原理與實務”,高立圖書,台北市,民國八十九年。 [63] 中國國家標準金屬材料拉伸試驗法的規範 [64] Robert E.Reed-Hill and Reza Abbacshian, “Physical Metallurgy Principles”, THOMSON (1992). [65] 黃忠良編著,”擠壓加工理論與工藝”,復漢出版社,民國八十三年。 [66] 蔣氏工業慈善基金工業技術課程系列,”鎂合金應用於3C產品之製程技術研習會”,2001。 [67] Z.C. Lin and D.Y. Chang, “Application of a neural network machine learning model in the selection system of sheet metal bending tooling”, International Journal of Artificial Intelligence in Engineering, Vol.10, pp.21-37 (1996).
|