跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/21 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施建章
研究生(外文):Chien-Chang Shih
論文名稱:製備改質聚乳酸奈米複合材料之研究
論文名稱(外文):The study of preparing PLA nanocomposites
指導教授:陳伯寬
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:87
中文關鍵詞:聚乳酸3. 2-甲基丙烯醯氧乙基異氰酸酯溶膠-凝膠奈米複合
外文關鍵詞:PLAMOISol-gelnanocomposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1044
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
PLA (Poly Lactic acid)具有無毒、生物可分解性與生物可相容性,但熱性質與機械性質較差,所以其應用範圍著實受到限制,而本研究先以MOI (2-Methacryloyloxyethyl Isocyanate)改質PLA,透過矽烷偶合劑之選擇來導入,再經由溶膠-凝膠法(Sol-gel)製成有機∕無機奈米混成材料,經FT-IR、29Si-NMR與13C-NMR來確定其反應機構,以TGA、DSC、HDT與MI來觀察改質前後熱性質差別,其Td-10%、Xc與Tm等熱性質,隨silica添加增加成比例上升,而MI值則變小, 再由拉力機與耐衝擊試驗來測試其機械性質,觀察經MOI改質後之韌性增加,而機械強度降低,但添加silica則反之,可透過silica添加量來控制改質後之韌性與機械強度,並由SEM圖觀察得知改質前後,與添加silica後之表面變化情形,其表面結構由MOI改質後變為孔洞狀,添加silica後使其粒子填入孔洞內,造成其韌性、力學性質與結晶性改變,最後利用靜電紡絲來研究奈米纖維紡絲的可行性。

PLA are used as biomedical materials because they are biodegradable, but the vast majority of biodegradable polymers in clinical use are composed of rather stiff materials that exhibit limited extendibility, weak mechanical strength and poor thermal stability, they are unsuitable for use in numerous applications. We modified PLA with 2-methacryloyloxy- ethyl isocyanate (MOI) to prepare ductile PLA materials. By utilizing the sol-gel process, novel PLA nanocomposites were further prepared with improved thermal stability and mechanical properties. The 10% thermal decomposition temperature for PLA modified with 5% MOI and contained 5-10% silica is 31-36oC higher than that of original pristine PLA. Elongation at break increases by 5-14 times when compared to neat PLA, while the tensile strength maintained at 30-40 MPa. These synthesized PLA nanocomposites can be applied as biomaterials with better mechanical and thermal properties.

中文摘要 I
ABSTRACT II
謝 誌 III
目 錄 V
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
第二章 文獻回顧 6
2.1.1 生物可分解性高分子聚乳酸(Poly Lactic acid;PLA)簡介 6
2.1.2 聚乳酸(Poly Lactic acid;PLA)之優勢 7
2.1.3 聚乳酸(Poly Lactic acid;PLA)之合成 9
2.2有機∕無機奈米混成材簡介 11
2.2.1有機粘土 11
2.2.2 溶凝膠法 13
2.2.3 POSS 14
2.2.4奈米碳管 15
2.3.1 二氧化矽(SiO2)之簡介 17
2.3.2 溶膠-凝膠法(Sol-gel)之進程發展 20
2.3.3 溶膠-凝膠法(Sol-gel)之定義 22
2.3.4 溶膠-凝膠法(Sol-gel)反應機構與因素 23
2.3.4.1含水量之影響 23
2.3.4.2 pH值之影響 24
2.3.4.3 溶劑之影響 26
2.3.4.4 溫度之影響 26
2.4實驗目的 26
第三章 實驗方法與步驟 28
3.1.1實驗藥品與原料 28
3.1.2使用檢測之儀器 29
3.1.2.1 傅立葉紅外線轉換光譜儀 (Fourier transform Infrared Spectroscopy,FT-IR)分析 29
3.1.2.2 超導核磁共振儀(nuclear magnetic resonance,NMR)分析 29
3.1.2.3 熱重量分析儀 (Thermogravimetric Analyzer,TGA) 30


3.1.2.4低溫調幅式示差掃描熱卡計(Low-Temperature-Modulate Differential Scanning Calorimeter,MDSC)分析 30
3.1.2.4 熱變形溫度 (Heat deflection temperature,HDT)測試分析 30
3.1.2.5 凝膠色譜分析儀 (Gel Permeation Chromatography,GPC)分析 31
3.1.2.6 萬能試驗拉力機 (universal testing machine)測試分析 31
3.1.2.7 熔融流動指數 (Melt Flow Index,MI) 分析 32
3.1.2.8 擺錘式衝擊 (Pendulum Impact Tester)試驗 32
3.1.2.9 X光繞射分析儀 (X-ray Diffraction, XRD)分析 32
3.1.2.10 掃瞄電子顯微鏡 (Scanning electron microscope,SEM) 33
3.1.2.12 電紡(Electrospinning)之分析 33
3.1.1. 改質實驗步驟 35


第四章 結果分析與討論 38
4.1 傅立葉轉換紅外線光譜儀 (Fourier transform Infrared Spectroscopy FT-IR)分析 38
4. 2 NMR(nuclear magnetic resonance)分析 48
4.3熱重量分析儀(Thermogravimetric Analyzer,TGA)分析 52
4.4 熱示差掃瞄卡量計(Differential Scanning Calorimeter,DSC)分析 55
4.4熱變形溫度測試分析 58
4.5凝膠色層分析儀(Gel Permeation Chromatography,GPC)分析 59
4.6 抗拉強度分析 61
4.7擺錘式衝擊試驗 64
4.8 PLA改質前後熔融流動指數 65
4.9 X-ray繞射分析 66
4.10 SEM分析 67
4.11 電紡(Electrospinning)之分析 71
結論 78
參考文獻 81



[1] Carothers WH, Arvin JA. Studies on polymerization and ring formation. II. poly-esters. J Am Chem Soc 1929; 51: 2560-2570.
[2] Maulding H. V. Biodegradable Microparticles: Acceleration of Polymeric Excipient Hydrolytic Rate by Incorporation of a Basic Medicament, Journal of Controlled Release, 1986; 3: 103-117.
[3] Pitt, C. G., J. Poly-DL-lactic acid: Polyethylene glycol block copolymers. The influence of polyethylene glycol on the degradation of poly-DL-lactic acid Journal of Controlled Release, 1987; 4: 283.
[4] Rak J., Ford J. L., Rostron C., Walters V., The preparation and characterization of poly(D,L-lactic acid) for use as a biodegradable drug carrier", Journal of Pharm Acta Helv , 1985; 60: 162-169
[5] Gopferich A, Mechanisms of polymer degradation and erosion, Biomaterials, 1996; 17: 103-114.
[6] Bostman OM. Osteolytic changes accompanying degradation of absorbable fracture fixation implants. J Bone Joint Surg Br 1991; 73(4): 679–82.
[7] Naitove M H., Push is on to commercialize biodegradable lactide polymers. Plastics Technology, 1995; 41: 15.
[8] Sodegard A., Stolt M., Properties of lactic acid based polymers and their correlation with composition. Prog. Polymer. Sci. 2002; 27: 1123.
[9] Thomson RC, Wake MC, Yaszemski MJ, Mikos AG., Biodegradable polymer scaffolds to regenerate organs, Adv Polym Sci 1995; 122: 245.
[10] Kim HD, Bae EH, Kwon IC, Pal RR, Nam JD, Lee DS,
Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation ,Biomaterials 2004; 25: 2319.
[11] Y. Ikada, K. Jamshidi, H. Tsuji, S.H.Hyon,Stereocomplexformation between enantiomeric poly(lactides), Macromolecules 1987; 20: 904-906.
[12] H.Tsuji, Y.Ikada, Crystallization from the melt of poly(lactide)s
with different optical purities and their blends, Macromol Chem. Phys.1996; 197: 3483-3499.
[13]Tice, T.R. and Cowsar, D.R. Biodegradable Controlled- release Parenteral. Systems, Pharm.l Technol 1984; 8: 26–36.

[14]Rak J, Ford J, Rostron C, Walters V. The preparation and characterization of poly(D,L-lactic acid) for use as a biodegradable drug carrier, Journal of Pharm Acta Helv , 1985; 60: 162-169.
[15] Takumi Okihara et al. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide), Journal of Macromolecular Science 1991; 30: 119-140
[16] Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, Synthesis of Nylon 6-clay hybrid, J Polym Sci Part A: Polym Chem 1993; 31: 2493.
[17] Pinnavaria TJ, Beall GW, editors, Polymer-clay nanocomposites; Wiley: New York, 2001.
[18] Yeh J M et al, Preparation and properties of (BATB–ODPA) polyimide–clay nanocomposite materials J. Appl. Polym. Sci. 2004; 92: 1072-1079.
[19] Lin JJ, Wei JC, Juang TY, Tsai WC, Langmuir, 2007; 23: 1995-1999.
[20] Wu TM, Chiang MF, Fabrication and characterization of biodegradable poly(lactic acid)/layered silicate nanocomposites, Polym Eng Sci, 2005; 45: 1615.
[21] Tsay SY, Chen BK, Chen CP, J Appl Polym Sci, 2006; 99: 2966-2972.
[22] Chen BK, Tsay SY, Chen CP, Nanocomposites Hybrid with Organo-Modified MontmorilloniteSolid, State Phenomena, 2006; 111: 43-46.
[23] Paul MA, Alexandre M, Dege´e P, Henristc C, Rulmontc A, Dubois P, New nanocomposite materials based on plasticized poly(L-lactide) and organomodified montmorillonites: Thermal and morphological study, Polymer 2003; 44: 443–450.
[24] Lee YH, Lee JH, An IG, Kim C, Lee DS, Lee YK, Nam JD, Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds,Biomaterials 2005; 26: 3165–3172.
[25] Uzochukwu GA et al. (eds), Thermal Characterization of Biodegradable Poly (Lactic Acid)/Clay Nanocomposites ,Proceedings of the 2007 National Conference on Environmental Science and Technology, 219-225.


[26] Bordes P, Pollet E, Averous L, Nano-biocomposites: Biodegradable polyester/nanoclay systems,Progress in Polymer Science 2009; 34: 125–155.
[27] Chiang CL, Ma CC, Wu DL, Kuan HC, Preparation, Characterization and Properties of Novolac Type Phenolic/SiO2 Hybrid Organic/Inorganic Nano-Composite Materials by Sol-Gel Method, J Polym Sci Part A: Polym Chem 2003; 41: 905.
[28] Chang CC, Chen WC, Synthesis and Optical properties of Polyimide- Silica Hybrid Thin Films, Chem Mater 2002; 14: 4242-4248.
[29] Chen HW, Chang FC, plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay, Polymer 2002; 43: 5281-5288.
[30] Hsueh HB, Chen CY, Preparation and properties of LDHs/ Polyimide Nanocomposites, Polymer 2003; 44: 1151-1161.
[31] Lin HL, Chao TY, Shih YF, Dai SA, Su WC, Jeng RJ, Stable Second-Order Nonlinear Optical Poly(amide-imide)/Inorganic Materials via Simultaneous Sequential Self-Repetitive Reaction and Sol-Gel Process,Polym for Adv Tech, 2008; 19: 984-992.
[32] Chen BK, Tsay SY, Chiu TM, Synthesis and characterization of polyimide/silica hybrid nanocomposites J Appl Polym Sci 2004; 94: 382-393.
[33] Chen BK, Su CT, Tseng MC, Tsay SY, Preparation of polyetherimide nanocomposites with improved thermal, mechanical and dielectric properties, Polymer Bulletin, 2006; 57(5): 671-681.
[34] Chen BK, Fang YT, Cheng JR, Tsay SY, Synthesis of Low Dielectric Constant Polyetherimide Films,Macromolecular Symposia, 2006; 242(1): 34-39.
[35] Chen BK, Fang YT, Cheng JR, Tsay SY, Effects of meta and para diamines on the properties of polyetherimide nanocomposite films prepared by the sol-gel process, J Appl Polym Sci, 2007; 105(3): 1093-1100.
[36] Chen BK, Du JU, Hou CW, The effects of chemical structure on the dielectric properties of polyetherimide and nanocomposites IEEE Transactions on Dielectrics and Electrical Insulation, 2008; 15(1): 127-133.


[37] Chen BK, Tsay SY, Shih IC, Synthesis of copolyimide containing fluorine and naphthalene with synergizing effect on dielectric constants, Polymer Bulletin 2005; 54(1): 39-46.
[38] Yan S, Yin J, Yang J, Chen X, Preparation and Characterization of Bioactive Poly (Lactic Acid)/SiO2-CaO Composite Membranes, Materials Letters 2007; 61: 2683–2686.
[39] Xu H, Kuo SW, Lee JS, Chang FC, Glass trastion temperature of poly(hydrooxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsequioxanes, Polymer 2002; 43: 5117.
[40] Lin WJ, Chen WC, Synthesis and Characterization of Poly(PMDA-ODA)-Methyl Silsesquioxane Hybrid Optical Thin Films, Polym Int 2004;53:1245-1252.
[41] Leu CM, Chang YT, Wei KH, Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine, Chem. Mater. 2003; 15: 3721-3727.
[42] Deng X, Hao J, Wang C, Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals, Biomaterials 2001; 22: 2867-2873.
[43] McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernacki SH, Gorga RE, Loboa EG, Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. International Journal of Nanomedicine 2007; 2(2): 253–263.
[44] Hule RA, Pochan DJ, MRS Bull, Correlations between structure, material properties and bioproperties in self-assembled β-hairpin peptide hydrogels, Polymer nanocomposites for biomedical applications, Apr 2007; 32: 354-358.
[45] Pramanik N, Mishra D, Banerjee I, Maiti TK, Bhargava P, Pramanik P, Chemical synthesis, characterization, and biocompatibility study of hydroxyapatite/chitosan phosphate nanocomposite for bone tissue engineering applications, International J Biomaterials, 2009; 1-8.
[46].Y. Tabata, Y. Lkada, Effect of the addition of 4,4-methylene diphenyl diisocyanate and silicate on the thermal and mechanical properties of polylactide, Biomed. Mater. Res. 1989; 22: 837.
[47] B. wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak, and J. E. McGrath, New high-refractive-index organic/inorganic hybrid materials from sol-gel processing, Macromolecules, 1991; 24: 3449.
[48] B. M. Novak, and C. davies, Inverse’ Organic-Inorganic Composite Materials 2. Free Radical Routes into Nonshrinking Sol-Gel Composites, Macromolecules, 1991; 24: 5481.
[49] H. Schmidt, Organic Modification of Glass Structure New Glasses or New Polymers J. Non-Crystalline Solids, 1989; 112: 419.
[50] J. E. Mark, C. Y. Jiang, and M. Y. Tang, Simultaneous curing and filling of elastomers, Macromolecules, 1984; 17: 2613
[51] J. E. Mark, and C. C. Sun, Comparisons among the reinforcing effects provided by various silica-based fillers in a siloxane elastomer ,Polymer, 1989; 30: 104.
[52] Brinker C.J, Scherer G.W , Sol-gel science, Academic Press Inc, 1990; ISBN: 0-12-134970-5.
[53]Larry L. Hench, Jon K. West, The sol-gel process Chem. Rev., 1990; 90(1): 33–72
[54]Jianye Wen , Garth L. Wilkes, Organic/Inorganic Hybrid Network Materials by the Sol−Gel Approach, Chem. Mater., 1996; 8 (8): 1667–1681
[55]Lisa C. Klein, Sol-gel technologies for glass producers and users, Springer, 1994; ISBN 0792394240, 9780792394242
[56]Sumio Sakka, Sol-gel science and technology: topics in fundamental research and applications, Springer, 2004; ISBN 1402079699, 9781402079696
[57]John Dalton Wright, Nico A. J. M. Sommerdijk. Sol-gel materials: chemistry and applications, Gordon and Breach Science Publishers, 2001; ISBN 9056993267, 9789056993269
[58].Ebelmen, JJ, Sur les produits de la décomposition des espèces minérales de la famille des silicates. Annales des Mines, 1845; 7: 3–66
[59] T.Graham,. On the Properties of Silicic Acid and. Other Analogous Colloidal Substances J.Chem Soc. 1864; 17: 318.
[60] Helmut Dislich, Paul Hinz, History and principles of the sol-gel process, and some new multicomponent oxide coatings, Journal of Non-Crystalline Solids.. 1982; 48(1): 11-16
[61] H. Schroeder, Oxide layers deposited from organic solutions, Phys. Thin Films, 1969; 5: 87.
[62] R.Roy, Gel Route to Homogeneous Glass Preparation, J. Am.Ceramic.Soc. 1969; 52: 344.

[63] G. L. Wilkes, B. Orler and H. Huang, Ceramers:Hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol-gel process, Polym. Bull. 1985; 14: 557–564.
[64]J.D.Mackenzie,Y.J.Chung and Y.Hu,J.Non-Cryst.Soilds., 1992; 147: 271.M. Asami, J. D. Mackenzie Transparent silica gel–PMMA composites, Journal of Materials Research 1989; 4: 1018-1026
[65]T.Saegusa,J.Macromol. Organic Polymer-Silica Gel Hybrid : A precursor of highly porous silica gelSci.,Chem.A., 1991; 28: 817
[66] T.Saegusa Y.Chujo, Organic polymer hybrids with silica gel formed by means of the sol-gel method, Advances in Polymer Science, Advances in Polymer Science, 1992; 100(1): 11-29,
[67]A.B. Wojcik, L. C. Klein, Transparent inorganic/organic copolymers by the Sol-Gel process: Copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and (meth)acrylate monomers, J. Sol-gel sci. tech. 1995; 4: 57
[68] Z.Ahmad,M.I.Sarwar,S.Wang and J.E.Mark, Preparation and properties of hybrid organic-inorganic composites prepared from poly(phenylene terephthalamide) and titania, polymer. 1997; 38: 4523-4529
[69] C. J. Brinker and G. W. Scherer, Eds., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, NY, USA, 1990.
[70] B. Himmel, T.Gerber,and H.Burger, X-ray diffraction investigations of silica gel structures,J.Non-crystal.Sol.,1987; 91:122
[71] Effect of long and short Pb-free soldering profiles of IPC/JEDEC J-STD-020 on plastic SMD packages, Microelectronics Reliability, 2004; 44: 1293 -1297
[72] C. J. Brinker,Hydrolysis and condensation of silicates: Effects on
structure, J. Non-Cryst. Solid. 1988;100: 31-50
[73] C. Sanchez, F. Ribot and B. Lebeau J. Mater. Chem., Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry, Journal of Materials Chemistry 1999; 9: 35-44
[74]Klein, L. C., Sol-gel Processing of Silicates, Ann. Rev. Mater. Sci. 1985; 15: 227
[75]Hayashi S, Fujiki K, Tsubokawa N, Grafting of hyperbranched polymers onto ultrafine silica_ postgraft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafed onto the surface, Reactive & Functional Polym., 2000; 46: 193
[76] Rubio, E.; Almaral, J.; Ramirez-Bon, R.; Castaño, V.; Rodriguez, V.,Organic-inorganic hybrid coating (poly (methyl methacrylate) /mono-disperse silica), Optical Mater., 2005; 27: 1266
[77] Mark JE, Lee CYC, Bianconi PA, Hybrid organic-inorganic composites, ACS Symposium series 585, ACS, Washington DC, 1995.
[78] Laine RM, Sanchez C, Brinker CJ, Giannelis E, Organic/Inorganic Hybrid Materials, , Materials Research Society, 2000; 628
[79] Brinker CJ, Scherer G.W, Sol-gel science: The physics and chemistry of sol-gel processing; Academic Press: New York, 1990.
[80] Iyoku Y, Kakimoto M, Imai Y, Preparation and properties of polyimide-polysiloxane hybrid materials by the sol-gel processHigh Perform Polym 1994; 6: 43.
[81] Landskron K, Ozin GA, Periodic Mesoporous Dendrisilicas, Science 2004; 306: 1529-1532.
[82] D.L. Wood, E.M. Rabinovich, Study of Alkoxide Silica Gels by Infrared Spectroscopy, Appl. Spectrosc. 1989; 43: 263
[83].M. Vert, Biodegradation of PLA/GA polymers: increasing complexity , Biomaterials, 1994; 15: 1209
[84].T. G. Park, Degradation of poly(D,L-lactic acid) microspheres: effect of molecular weight, Joural of Controlled Release, 1994; 30: 161-173.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊