跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃立中
研究生(外文):Li-Chung Huang
論文名稱:聲子晶體在感測器陣列隔絕之研究
論文名稱(外文):Isolation of Acoustic Waves in a Sensor Array Utilizing Phononic Crystals
指導教授:陳永裕陳永裕引用關係
指導教授(外文):Yung-Yu Chen
口試委員:陳永裕
口試日期:2012-05-17
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:63
中文關鍵詞:感測器陣列有限元素法聲子晶體
外文關鍵詞:finite element method.phononic crystalsensor arrayisolation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
近年來,多個徹體聲波感測器已被製作在單一壓電基材上,形成可同時感測不同參數的感測器陣列,然而隨著尺寸的縮小,將引致感測器間聲波干擾的問題。聲子晶體是由兩種不同的彈性材料依週期性排列而成的結構,可能具有頻溝,即讓特定頻率的聲波將無法通過此結構,因此本論文結合聲子晶體與石英晶體微天平(Quartz Crystal Microbalances, QCMs)感測器陣列,在感測器單元周圍佈置聲子晶體,以隔絕感測器間的聲波干擾。首先,使用有限元素法分析QCM的振盪模態及聲子晶體的頻散曲線。當石英晶片的厚度為80 μm,聲子晶體的晶格常數為100 μm、填充率為0.475時,全頻溝出現在19.4到23.1 MHz,涵蓋 QCM第一共振模態的頻率(20.77 MHz)。此外,也利用週期性邊界的設定來模擬QCM感測器陣列,結果顯示當圍繞3排有頻溝設計的聲子晶體時,聲波能量明顯集中在感測器的中心,且聲波衰減約為30 dB,表示此聲子晶體可用作QCM感測器陣列的阻隔。最後,根據模擬結果設計1X2的QCM感測器陣列,並使用反應離子蝕刻來製作。量測結果顯示,有頻溝設計的聲子晶體能降低聲波干擾達20 dB,且QCM的頻率響應也因此具有較少的副波。本論文的研究成果驗證了聲子晶體確實能與QCM感測器陣列結合,達到降低感測器間聲波干擾的目的。
In recent years, multiple bulk acoustic wave sensors have been fabricated on a single piezoelectric substrate to develop a sensor array for the detection of multiple analyte parameters. However, such an array may induce acoustic interference between adjacent sensors. Phononic crystals are synthetic structures with periodic variation of elastic property. A phononic crystal with band gaps forbids acoustic waves within the frequency ranges of band gaps to propagate through the structure. This study proposes a sensor array consisting of multiple quartz crystal microbalances (QCMs) which are surrounded by phononic crystals. Phononic crystals are utilized for isolating acoustic energy of individual QCM and suppressing the interference. At first, the resonance response of a QCM and dispersion relations of quartz plates with square-lattice phononic crystals were calculated by finite element analysis. When the thickness of the AT-cut quartz substrate, lattice constant, and filling ratio are chosen as 80 μm, 100 μm, and 0.475, a complete band gap occurs from 19.4 to 23.1 MHz and includes the first resonance frequency of the QCM (20.77 MHz). QCM sensor arrays were also simulated by setting the periodic boundary condition. Results show that mode shape of a sensor unit surrounded by six rows of the phononic crystals with band gap has centralized displacement field distribution and acoustic energy attenuation about 30 dB, indicating that the phononic crystals indeed contribute to a confinement of acoustic energy in the individual QCM. Moreover, the sensor arrays with two QCMs were designed based on the simulation results and fabricated by deep reactive ion etching. Measurement results show that the phononic crystal with band gap forbids acoustic waves and contributes to decrease spurious modes in the frequency response of the QCM sensor array. Accordingly, phononic crystal is verified to be capable of suppressing the crosstalk between adjacent QCMs in a sensor array.
誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 X
符號說明 XI
第一章 前 言 1
1.1研究動機 1
1.2文獻回顧 1
1.3本篇簡介 3
第二章 石英晶體微天平(QCM)氣體感測器 4
2.1 AT-CUT石英晶片之性質 4
2.2 QCM之感測原理 5
2.3模擬之尺寸及參數設定 5
2.4特徵頻率模態之選定 6
2.5 QCM對於機械性質與電性質之感測變化 6
第三章 聲子晶體用於AT-cut石英波傳阻隔分析 14
3.1聲子晶體之波傳理論 14
3.2石英聲子晶體結構之數值模擬 16
3.3感測器陣列分析 17
第四章 壓電感測器陣列之製作與量測結果 25
4.1實驗流程與元件製程 25
4.1.1製作聲子晶體結構 25
4.1.2製作感測器陣列之電極 29
4.2量測 30
4.2.1儀器架設 30
4.2.2量測結果與討論 32
第五章 結論與未來展望 57
5.1結論 57
5.2未來展望 58
參考文獻 60
1.B. C. Munoz, G. Steinthal, and S. Sunshine, “Conductive polymer-carbon black composites based sensor arrays for use in an electronic nose,” Sensor Review, 19, pp. 300-5, 1999.
2.J. W. Gardner and D. C. Dyer, “High-precision intelligent interface for a hybrid electronic nose,” Sensors and Actuators A: Physical, 62, pp. 724-8, 1997.
3.Z. Jin, Y. Su, and Y. Duan, “Development of apolyaniline-based optical ammonia sensor,” Sensors and Actuators B: Chemical, 72, pp. 75-9, 2001.
4.J. A. Covington, J. W. Gardner, D. Briand, and N. F. Rooij, “A polymer gate fet sensor array for detecting organic vapours,” Sensors and Actuators B: Chemical, 77, pp. 155-62, 2001.
5.E. L. Kalman, A. Lofvendahl, F. Winquist, and I. Lundstrom, “Classification of complex gas mixtures from automotive leather using an electronic nose,” Analytica Chimica Acta, 403, pp. 31-8, 2000.
6.K. J. Albert and N. S. Lewis, “Cross reactive chemical sensor arrays,” Chemical Review, 100, pp. 2595-626, 2000.
7.M. Penza, G. Cassano, A. Sergi, C. L. Sterzo, and M. V. Russo, “SAW chemical sensing using poly-ynes and organometallic polymer films,” Sensors and Actuators B: Chemical, 81, pp. 88-98, 2001.
8.E. J. Staples, “Dioxin/Furan detection and analysis using a SAW-based electronic nose,” Proceedings of IEEE Ultrasonics Symposium, pp. 521-4, 1998.
9.J. Rabe, V. Seidennann, and S. Buettgenbach, “Monolithic fabrication of wireless miniaturized quartz crystal microbalance (QCM-R) arrays and their application for biochemical sensors,” Sensors and Materials, 15, pp. 381-91, 2003.
10.M. M.A. François, E. Ergezen, J. Desa, K. Pourrezaei, and R. Lee, “Multi-Layer interfacial property analysis using a multi-frequency thickness shear mode (MFTSM) device built on single-chip,” Proceedings of IEEE Ultrasonics Symposium, pp. 256-9, 2007.
11.S. Buttenbach, B. Zimmennann, and P. Hauptmann, “Design, manufacturing, and characterization of high-frequency thickness-Shear mode resonators,” Proceedings of IEEE/EIA Frequency Control Symposium and Exhibition, pp. 106-12, 2000.
12.T. Tatsuma, Y. Watanabe, and N. Oyama, “Multichannel quartz crystal microbalance,” Analytical Chemistry, 71, pp. 3632-6, 1999.
13.T. Leblois, C. R. Tellier, and T. Messaoudi, “Chemical etching of Y-rotated quartz plates: experiments and theoretical approach,” Sensor and Actuators A: Physical, 61, pp. 405-14, 1997.
14.P. Suda, A. E. Zumsteg, and W. Zingg, “Anisotropy of etching rate for quartz in ammonium bifluoride,” Proceedings of the 33rd Annual Symposium on Frequency Control, pp. 359-63, 1979.
15.S. Winters, G. Bernhardt, D. J. Frankel, and J. Vetelino, “Lateral field excitation of well structures in quartz,” Proceedings of IEEE Ultrasonics Symposium, pp. 272-5, 2008.
16.M. Wark, S. Winters, C. York, W. Pinkham, G. Bernhardt, and J. F. Vetelino, “A lateral field excited sensor array on a single piezoelectric substrate,” Proceedings of IEEE Ultrasonics Symposium, pp. 880-3, 2006.
17.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Physical Review Letters, 71, pp. 2022-5, 1993.
18.M. M. Sigalas and E. N. Economou, “Elastic and acoustic wave band structure,” Journal of Sound and Vibration, 158, pp. 377-82, 1992.
19.T. T. Wu, W. S. Wang, J. H. Sun, J. C. Hsu, and Y. Y. Chen, “Utilization of phononic-crystal reflective gratings in a layered surface acoustic device,” Applied Physics Letters, 94, 101913, 2009.
20.T. T. Wu, Y. T. Chen, J. H. Sun, S. C. S. Lin, and T. J. Huang, “Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate,” Applied Physics Letters, 98, 171911, 2011.
21.S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, “Support loss suppression in micromechanical resonators by the use of phononic band gap structures,” Proceedings of SPIE Photonics West, 7609, 76096W, 2010.
22.S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Applied Physics Letters, 94, 051906, 2009.
23.R. H. Olsson III, I. F. El-Kady, M. F. Su, M. R. Tuck, and J. G. Fleming, “Microfabricated VHF acoustic crystals and waveguides,” Sensors and Actuators A: Physical, 145, pp. 87-93, 2008.
24.C. I. Lee, J. C. Hsu, T. C. Huang, C. H. Wang, and P. Chang, “Acoustic band gaps in phononic crystal strip waveguides,” Applied Physics Letters, 96, 051902, 2009.
25.Y. C. Lin, T. Ono, and M. Esashi, “Fabrication and characterization of micromachined quartz-crystal cantilever for force sensing,” Journal of Micromechanics and Microengineering, 15, pp. 2426-32, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊