|
1.Allgower E. L., and Georg K., Numerical path following, Acta Numerica, 2(1997), pp. 1-64. 2.Allgower E. L., A survey of homotopy methods for smooth nappings, in Numerical Solutions of Nonlinear Equations, E. L. Allgower, K. , H. -O. , eds., Lecture Notes in Mathematics 878, Springer-Verlag, New York, 1981, pp. 1-29. 3.Bolstad J. H. & Keller H. B., A multigrid continuation method for elliptic problems with folds, SIAM Journal on Scientific and Statistical Computing, 7(1986), pp.1081-1104. 4.Brandt A., Multi-level adaptive solutions to boundary value problems, Mathematics of Computation, 31(1977), pp.333-390. 5.Briggs W. L., Van Emden, Henson \& McCormic S. F., A Multigrid Tutorial, Second Ed., SIAM Publications, Philadelphia, 2000. 6.Brown P. N. and Walker H. F., GMRES on (nearly) singular systems, SIAM Journal on Matrix Analysis and Applications, 18(1997), pp.37-51. 7.Chan T. F. & Keller H. B., Arc-length continuation and multi-grid techniques for nonlinear elliptic eigenvalue problems, SIAM Journal on Scientific and Statistical Computing, 3(1982), pp.173-194. 8.Chang S.-L. and Chien C.-S. , A multigrid-Lanczos algorithm for the numerical solutions of nonlinear eigenvalue problems, Inter. J. Bifurcation and Chaos., 13(2003), pp.1217-1228. 9.Chien C.-S. and Chang S.-L., Application of the Lanczos algorithm for solving the linear systems that occur in continuation problems, Numer. Linear Algebra Applics., 10(2003), pp.335-355. 10.Chien C.-S., Weng Z.-L. and Shen C.-L., Lanczos type methods for continuation problems, Numerical Linear Algebra with Applications, 4(1997), pp.23-41. 11.Doedel E. J., Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Sandstede B.,\& Wang X. J., AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont), User's Guide, (Computer Science Department, Concordia University, Montreal, Canada) 1997. 12.Doedel E. J., Paffenroth R. C., Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Sandstede B., & Wang X. J., AUTO2000: Continuation and bifurcation software for ordinary differential equations, Report, (Applied Mathematics, Caltech, Pasadena) 2000. 13.Golub G. H. and Van Loan C. F., Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996. 14.Govaerts W. J. F.,Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM Publications, Philadelphia, 2000. 15.Hackbusch W., Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985. 16.Keller H. B., Lectures on Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin, 1987. 17.Lanczos C., An iteration method for the solution of the eigenvalue problems of linear differentiaal and integral operators, Journal of Research of the National Bureau of Standards, 45(1950), pp.255-282. 18.Liu J.-L. and Rheinboldt W. C., A posteriori finite element error estimators for parametrized nonlinear boundary value problems, Numer. Funct. Anal. and Optimiz., 17(5 \& 6)(1996), pp.605-637. 19.Mei Z., A numerical approximation for the simple bifurcationproblems, Numer. Functl. Anal. Optimiz., 10(1989), pp.383--400. 20.Mittelmann H. D. and Weber H., Multi-grid solution of bifurcation problems, SIAM Journal on Scientific and Statistical Computing, 6(1985), pp.49-85. 21.Papadrakakis M.and Smerou S., A new implementation of the Lanczos method in linear problems, International Journal for Numerical Methods in Engineering, 29, 141-159, 1990. 22.Parlett B. N., The Symmetric Eigenvalue Problems, Prentice Hall, Englewood Cliffs, NJ, U.S.A., 1980. 23.Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Co., Boston, 1996. 24.Weber H., Multigrid bifurcation iteration, SIAM Journal on Numerical Analysis, 22(1985), pp.262-279.
|