跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜慧絹
研究生(外文):Hui-Juan Tu
論文名稱:使用多重網格有限元素方法解非線性特徵值問題
論文名稱(外文):Multigrid-Finite Element Methods for Nonlinear Eigenvalue Problems
指導教授:簡澄陞
指導教授(外文):Cheng-Sheng Chien
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:28
中文關鍵詞:非線性特徵值問題分歧點延續法有限元素法多重網格法對稱線性系統Lanczos方法
外文關鍵詞:nonlinear eigenvalue problemsbifurcation pointscontinuation methodsfinite element methodmultigrid methodssymmetric linear systemsLanczos method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
我們討論多重網格法應用在延續法中,來解非線性橢圓特徵值問題。我們使用有限元素法來離散化這些問題,且在多重網格法的V-循環,W-循環以及完全的多重網格V-循環中,使用Lanczos法作為其中的鬆弛法。我們提供一些多重網格延續演算法找出非線性橢圓特徵值問題的曲線。由數值的結果證明我們提供的演算法是有效的。最後我們將所得結果繪製成圖表並做結論。

We study multigrid methods in the context of continuation methods for nonlinear elliptic eigenvalue problems. Here we use the finite element method to discretize the problems. The Lanczos method is used as the relaxation scheme for the V-cycle, W-cycle and full multigrid V-cycle schemes, respectively. Some multigrid-continuation algorithms are proposed for tracing the solution curves in the nonlinear elliptic eigenvalue problems. Our numerical results show the algorithms we propose are efficient. Finally, some concluding remarks are given.

1.Introduction 1
2.A brief review of the Lanczos type algorithms 2
3.Continuation and local perturbation 3
4.The finite-element method 6
5.V-cycle, W-cycle and full multigrid V-cycle methods 8
6.Numerical results 12
7.Conclusions 14
List of tables 15
List of figures 18
References 27

1.Allgower E. L., and Georg K., Numerical path following, Acta Numerica, 2(1997), pp. 1-64.
2.Allgower E. L., A survey of homotopy methods for smooth nappings, in Numerical Solutions of Nonlinear Equations, E. L. Allgower, K. , H. -O. , eds., Lecture Notes in Mathematics 878, Springer-Verlag, New York, 1981, pp. 1-29.
3.Bolstad J. H. & Keller H. B., A multigrid continuation method for elliptic problems with folds, SIAM Journal on Scientific and Statistical Computing, 7(1986), pp.1081-1104.
4.Brandt A., Multi-level adaptive solutions to boundary value problems, Mathematics of Computation, 31(1977), pp.333-390.
5.Briggs W. L., Van Emden, Henson \& McCormic S. F., A Multigrid Tutorial, Second Ed., SIAM Publications, Philadelphia, 2000.
6.Brown P. N. and Walker H. F., GMRES on (nearly) singular systems, SIAM Journal on Matrix Analysis and Applications, 18(1997), pp.37-51.
7.Chan T. F. & Keller H. B., Arc-length continuation and multi-grid techniques for nonlinear elliptic eigenvalue problems, SIAM Journal on Scientific and Statistical Computing, 3(1982), pp.173-194.
8.Chang S.-L. and Chien C.-S. , A multigrid-Lanczos algorithm for the numerical solutions of nonlinear eigenvalue problems, Inter. J. Bifurcation and Chaos., 13(2003), pp.1217-1228.
9.Chien C.-S. and Chang S.-L., Application of the Lanczos algorithm for solving the linear systems that occur in continuation problems, Numer. Linear Algebra Applics., 10(2003), pp.335-355.
10.Chien C.-S., Weng Z.-L. and Shen C.-L., Lanczos type methods for continuation problems, Numerical Linear Algebra with Applications, 4(1997), pp.23-41.
11.Doedel E. J., Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Sandstede B.,\& Wang X. J., AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont), User's Guide, (Computer Science Department, Concordia University, Montreal, Canada) 1997.
12.Doedel E. J., Paffenroth R. C., Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Sandstede B., & Wang X. J., AUTO2000: Continuation and bifurcation software for ordinary differential equations, Report, (Applied Mathematics, Caltech, Pasadena) 2000.
13.Golub G. H. and Van Loan C. F., Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
14.Govaerts W. J. F.,Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM Publications, Philadelphia, 2000.
15.Hackbusch W., Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
16.Keller H. B., Lectures on Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin, 1987.
17.Lanczos C., An iteration method for the solution of the eigenvalue problems of linear differentiaal and integral operators, Journal of Research of the National Bureau of Standards, 45(1950), pp.255-282.
18.Liu J.-L. and Rheinboldt W. C., A posteriori finite element error estimators for parametrized nonlinear boundary value problems, Numer. Funct. Anal. and Optimiz., 17(5 \& 6)(1996), pp.605-637.
19.Mei Z., A numerical approximation for the simple bifurcationproblems, Numer. Functl. Anal. Optimiz., 10(1989), pp.383--400.
20.Mittelmann H. D. and Weber H., Multi-grid solution of bifurcation problems, SIAM Journal on Scientific and Statistical Computing, 6(1985), pp.49-85.
21.Papadrakakis M.and Smerou S., A new implementation of the Lanczos method in linear problems, International Journal for Numerical Methods in Engineering, 29, 141-159, 1990.
22.Parlett B. N., The Symmetric Eigenvalue Problems, Prentice Hall, Englewood Cliffs, NJ, U.S.A., 1980.
23.Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Co., Boston, 1996.
24.Weber H., Multigrid bifurcation iteration, SIAM Journal on Numerical Analysis, 22(1985), pp.262-279.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top