跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/23 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李雲漫
研究生(外文):Yun-Man Lee
論文名稱:鋰離子電池正極材料- 磷酸鋰鐵之改質研究
論文名稱(外文):Modifications of cathode Material LiFePO4 for Lithium-ion Battery
指導教授:蔡宜壽蔡宜壽引用關係
指導教授(外文):I-Shou Tsai
口試委員:謝其源蔡宜壽呂晃志
口試委員(外文):Kevin-Yuan ShiehI-Shou TsaiHoang-Jyh Leu
口試日期:2013-06-25
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:112
中文關鍵詞:奈米銀多元醇法磷酸鋰鐵循環伏安
外文關鍵詞:nano silverpolyol methodLiFePO4cyclic voltammetry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年,隨著科技業的發達,對於能源需求量也日益增加。電池的發展從大而笨重逐漸研發成輕薄短小的鋰離子電池,其能量密度、輸出功率、使用壽命及安全性好,已成為產業界普遍研究的發展方向。其中以鋰離子電池陰極材料中的磷酸鋰鐵之研究備受矚目,因其有良好的熱穩定性、成本低、安全性、平穩的工作電壓、無毒等優點,已實際地被應用在電動車上。但其仍然具有鋰離子擴散限制及導電率低的問題存在,故許多研究學者以添加金屬或降低粒徑來改善其性能。
本研究將磷酸鋰鐵球磨降低粒徑後,將奈米銀包覆於其表面上,探討奈米銀對磷酸鋰鐵是否有幫助傳遞電子及鋰離子之效益。本實驗利用多元醇法,以140 ℃的乙二醇中加入硝酸銀並加入聚乙烯吡咯烷酮(PVP)作為保護劑,再加入葡萄糖反應2小時,使還原的銀粒子包覆於磷酸鋰鐵表面上。烘乾後將粉體依比例75:15:10 wt % = 磷酸鋰鐵-銀:碳黑:聚偏氟乙烯的比例配製成漿料,並塗佈成陰極電極而進行循環伏安測試。
實驗結果得知,在二甲基亞碸(DMSO)溶劑中球磨磷酸鋰鐵粉體,以800 rpm球磨1小時並添加鋯珠量200 g,得到粒徑大小234.7 nm的磷酸鋰鐵粉體,與未球磨粉體相比降低79.2 %。
加入PVP保護劑所合成的奈米銀披覆於磷酸鋰鐵後發現,以PVP 10K所合成之奈米銀粒子大小均勻性好且在磷酸鋰鐵表面之包覆性較佳。經過300 ℃、0.5 hr熱處理後,將不良導體的PVP高分子含量減少46.8 %,電容量達84.24 mAh/g,與未添加奈米銀的磷酸鋰鐵相比提高15.80 %的電容量。故添加奈米銀對磷酸鋰鐵進行包覆能改善磷酸鋰鐵的鋰離子擴散及導電率低的問題。
Recently, the demand for energy is increasing due to advanced technology development. The energy density, output power, effective duration and safety of Li-ion battery is much better than those of tradition al battery. The production of Li-ion battery becomes the main trend of industry, from cumbrous to thin and light.
Wherein the lithium-ion battery cathode materials of lithium iron phosphate (LiFePO4) has attracted much attention, because of its good thermal stability, affordability, safety, stability of functioning voltage, non-toxic and flat voltage profile, etc. These advantage have actually been used in electric vehicles. However, it still has a low ionic diffusivity and poor electronic conductivity, therefore many researchers add metal which decreases the particle size to improve its performance.
In this study, particle size of lithium iron phosphate was reduced after milling, the surface thereon was coated with nano-silver. Here, we are explore and discuss the benefits of nanosilver on transferring electrics and Li-ion.
A polyol method was used in this study, we added silver nitrate (AgNO3) in the Ethylene Glycol (EG) at 140 ℃, and then added polyvinyl pyrrolidone (PVP) as a protective agent. After that, we added glucose reaction for 2 hours. Finally the surface of lithium iron phosphate was coated with reduced silver particles. After drying, a slurry composition of powders in proportion of Lithium iron phosphate- silver: Carbon black: PVDF ratio is 75:15:10 wt% and coated to the cathode electrode for cyclic voltammetry tests.
Experimental results showed that lithium iron phosphate powder was milled with zirconium beads 200 g in dimethyl sulfoxide (DMSO) solvent at 800 rpm for 1 hour. Its particle size was 234.7 nm that decreased 79.2 % compared with non-milled powder.
As PVP protective agent was added, the uniformity of particle size and surface coating of lithium iron phosphate coated with nano silver was found in PVP of 10K. After 300 ℃ and 0.5 hr thermal treatment, the PVP polymer content with poor electric conductivity decreased 46.8 %. The capacity of capacitor was 84.24 mAh / g which increased capacitance of 15.80% compared to lithium iron phosphate without adding nano silver particles. Therefore, lithium iron phosphate coated with nano silver particles can improve the lithium ion diffusion and decrease electric conductivity.
摘要 I
Abstract III
目錄 V
圖目錄 I X
表目錄 XIV
第一章 前言 1
1.1緒論 1
1.2 鋰離子電池發展簡介 2
1.3研究動機 5
第二章 文獻回顧及原理 7
2.1鋰離子電池工作原理及其架構 7
2.1.1鋰離子電池工作原理 7
2.1.2鋰離子電池組成架構 8
2.1.2.1電解液 8
2.1.2.2隔離膜 9
2.1.2.3陽極(負極)材料 10
2.1.2.4陰極(正極)材料 13
2.2磷酸鋰鐵的介紹 18
2.3磷酸鋰鐵陰極材料之缺點 20
2.4磷酸鋰鐵陰極材料之改善方法 22
2.4.1改善鋰離子擴散速率 22
2.4.1.1球磨法 24
2.4.2增加電子傳遞效率 27
2.5奈米粒子之製備 30
2.5.1多元醇法 33
2.6奈米銀粒子的製備 35
2.6.1 PVP保護機制 37
2.7聚矽氧烷偶合劑 38
第三章 實驗 39
3.1實驗藥品與儀器 39
3.1.1藥品 39
3.1.2實驗器材 42
3.1.3分析儀器 44
3.2實驗流程 46
3.2.1 製備磷酸鋰鐵分散液 46
3.2.2 添加奈米銀於磷酸鋰鐵中 49
3.2.3 電極製作 53
3.3儀器分析 55
3.3.1 紫外光/可見光吸收光譜分析(UV-vis) 55
3.3.2掃描式電子顯微鏡分析(SEM) 55
3.3.3 穿透式電子顯微鏡分析(TEM) 56
3.3.4雷射粒徑分析(SPSA) 56
3.3.5 X-ray粉末繞射儀分析(XRD) 56
3.3.6 循環伏安測試分析(CV) 57
3.3.7充放電測試分析 59
第四章 結果與討論 61
4.1磷酸鋰鐵之粒徑及表面分析 61
4.1.1 不同球磨時間對磷酸鋰鐵粒徑大小之影響 61
4.1.2 不同球磨轉速對磷酸鋰鐵粒徑大小之影響 64
4.1.3 不同鋯珠添加量對磷酸鋰鐵粒徑大小之影響 66
4.1.4 不同溶劑對磷酸鋰鐵粒徑大小之影響 68
4.1.5不同矽氧烷偶合劑(silane)添加量對磷酸鋰鐵粒徑大小之影響 69
4.1.6 磷酸鋰鐵之表面形態分析 72
4.2合成奈米銀 74
4.2.1 無保護劑合成之奈米銀 74
4.2.2 有保護劑(PVP)合成之奈米銀 76
4.3 不同分子量PVP合成奈米銀披覆於磷酸鋰鐵表面之型態分析 81
4.4 不同分子量PVP合成之奈米銀披覆於磷酸鋰鐵表面對循環伏安之影響 87
4.5不同濃度PVP 10K合成之奈米銀披覆磷酸鋰鐵表面對循環伏安之影響 91
4.6不同熱處理合成之奈米銀披覆磷酸鋰鐵表面對循環伏安之影響 94
4.7 熱處理合成之奈米銀披覆磷酸鋰鐵表面之結構與表面形態分析 101
第五章 結論 105
參考文獻 107
[1] 林玉潤,工業材料,215期,2004年,p.87。
[2] 李文雄,科技發展,362期,2003年,p.34。
[3] 林振華、林振富,充電式鋰離子電池:材料應用,全華圖書,
2002年。
[4] 李仁傑,楊長榮,工業材料,275期,2009年,p.40。
[5] 陳金銘,工業材料,1997,p.133、p.85。
[6] E. E. Yair, Electrochemical and Solid State Letter,(1999) ,2(5), 212.
[7] R. Fong and J. R. Dahn, J. Electrochem. Soc., (1990),137,2009.
[8] M. Inaba, H. Yoshida and Z. Ogumi, J. Electrochem. Soc.,(1996),143,
2572.
[9] M. Wilson and J. R.Dahv, J. Electrochem. Soc.,(1995),142, 326.
[10] Y. E. Eli and V. R. Koch, J. Electrochem. Soc., (1997),144, 2968.
[11] 楊模樺,工業材料, 133期,1997年,p.81、p.137。
[12] M. Winter and J. O. Besenhard, Electrochimica Acta, (1999),45, 31.
[13] K.Mizushima, P. C Jones, P. J. Wiseman and J. B.
Goodenough,Mater.Res.Bull.,(1980),17, 783.
[14] D. Dyer, B. S. Borie and G.P. Smith, J. Am. Chem. Soc., (1954),78,
1499.
[15] K. Hirakawa, H. Kadowaki and K. Ubukoshi, J. Phys. Soc. Jpn.,
(1985),54,3526.
[16] 吳齊昇, The Chinese Chen. Soc., (1999) ,57, 167.
[17] 劉定國,鋰離子電池鋰錳系陰極材料之研究,碩士論文,
台灣科技大學化工所,2000年。
[18] G. Pistoia, D. Zane and Y. Zhang, J. Electrochem. Soc.,(1995),142,
2551.
[19] M. M. Thackeray, S. H. Yang, A. T. Kahaian, K. D. Kepler,
E.Skinner, T. T.Vaughey and S. A. Hackney, Electrochemical and
Solid State Letters, (1998) ,1,17.
[20] P. Arora and R. E. White, J. Electrochem. Soc., (1998) ,145, 3647.
[21] R. J. Gummow, A. D. Kock and M. M. Thacktray, Solid State Ionics,
(1994),53, 59.
[22] 黃可龍,王兆翔,劉素琴,鋰離子電池原理與技術,五南,
2010年。
[23] 吳弘俊,工業材料,260期,2008年,p.6。
[24] 許雪萍,工業材料,130期,p.104。
[25] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J.
Electrochem. Soc., (1997) ,144, 1188.
[26] Miran Gaberscek , Robert Dominko, Janez Jamnik, Is small particle
size more important than carbon coating?An example study on
LiFePO4 cathodes, Electrochemistry Communications,
(2007) ,2778–2783.
[27] A. S. Andersson and J. O. Thomas, J. Power Source, (2001),97/98,
498.
[28]C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Electrochem.
Solid-State Lett,(2006) ,A352,9.
[29] B.K. Kang, G. Ceder, Nature ,(2009),458,190.
[30] W.J. Zhang, J. Electrochem. Soc., (2010), A1040,157.
[31] J. Jamnik, J. Maier, Phys. Chem,Chem. Phys., (2003), 5215,5.
[32] Yong Zhang , Qing-yuan Huo, Pei-pei Du, Li-zhen Wang, Ai-qin
Zhang, Yan-hua Song, Yan Lv, Guang-yin Li, Advances in new
cathode material LiFePO 4 for lithium-ion batteries, Synthetic
Metals,(2012), p.1315-1326.
[33] C. Lai, Q. Xu, H. Ge, G. Zhou, J. Xie, Solid State Ionics ,(2008), 1736,179.
[34] Y.Z. Dong, Y.M. Zhao, Y.H. Chen, Z.F. He, Q. Kuang, Materials
Chemistry and Physics ,(2009),245,115.
[35] K. Zaghib, A. Mauger, F. Gendron, C. Julien, Ionics ,(2008), 271,
14.
[36] S.B. Lee, S.H. Cho, S.J. Cho, G.J. Park, S.H. Park, Y.S. Lee,
Synthesis of LiFePO4 material with improved cycling performance
under harsh conditions ,Electrochemistry Communications ,
(2008),1219,p.10.
[37] R. Dominko, M. Bele,M. Gaberscek, M. Remskar, D. Hanzel, J.M.
Goupil, S. Pejovnik, J. Jamnik, Porous olivine composites
synthesized by sol–gel technique, J. Power Sources, (2006)
p.274–280.
[38] Mu-Rong Yang , Wei-Hsin Ke, She-Huang Wu , Preparation of
LiFePO4 powders by co-precipitation , Journal of Power
Sources ,(2005), 539–543.
[39] Peixin Zhang , Xinyang Li, Zhongkuan Luo, Xiaoqian Huang ,
Jianhong Liu , Kinetics of synthesis olivine LiFePO4 by using a
precipitated-sintering method , Journal of Alloys and
Compounds ,(2009) ,390-396.
[40] OU. Jun. ke, Lin. Lin, GUO Yong, WANG Qiang, XIAO Dan,
Electrochemical performance of LiFePO 4 synthesized by
hydrothermal method, Chemical Research and Application,
(2011) ,23, 12.
[41] Ni. J. F, Masanori. Morishita, Yoshiteru. Kawabe, et al,
Hydrothermal preparation of LiFePO4 nanocrystals mediated by
organic acid [J], J. Power Sources, (2010),2877-2882.
[42] Yu. F., Zhang. J., Yang. Y., Songa. G., J. Power, (2010), 195, 6873.
[43] Akao. S., Yamada. M., Kodera. T., Ogihara. T., International Journal
of Chemical Engineering, (2010),Article ID 175814.
[44] X.-F. Guo, H. Zhan, Y.-H. Zhou, Solid State Ionics ,(2009) ,386,180.
[45] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, et al.,
Electrochimica Acta, (2009), 3206,54.
[46] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, H.G. Kim,
Electrochemistry Communications, (2003), 839,5.
[47] 吳秀敏,PTFE/SiO2奈米複合板材製備及其物理性質之研究,逢
甲大學紡織工程研究所碩士論文,P.24~25,2005年。
[48] Kim, H. S, Cho B. W., Cho. W. I.,J. Power, (2004),132,235.
[49] Liao. X. Z., M. Z. F., Zhang. X. X., Mater. Lett,(2007), 61, 1260.
[50] Konarova. M., Taniguchi. I., Power Technol, (2009), 191, 111.
[51] Wei-Jun Zhang, Structure and performance of LiFePO 4 cathode
materials: A review, Journal of Power Sources, (2011),p.2962-2970.
[52] SungYoon Chung, Jason T. Bloking and Yet Ming Chiang,
Electronically conductive phospho-olivines as lithium storage
electrodes,Articles, (2002), p.123-128.
[53] J.F. Ni, H.H. Zhou ,J.T. Chen,X.X. Zhan, LiFePO4 doped with ions
prepared by co-precipitation method, Materials Letters,
(2005) ,p.2361–2365.
[54] Xiongge Yin, Kelong Huang , Suqin Liu, Haiyan Wang, Hao Wang,
Journal of Power Sources, (2010),p. 4308-4312.
[55] S. Y.Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater, (2002),p.123.
[56] H. Liu, G.X. Wang , D. Wexler, J.Z. Wang, H.K. Liu, Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer, Electrochemistry Communications, (2008) p.165–169
[57] Jingwen Yao, Feng Wu, , Xinping Qiu, Ning Li, Yuefeng Su,
Electrochimica Acta, (2011),p.5587-5592.
[58] C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li, Power
Technology, (2008), p.301-306.
[59] K. S. Park, J. T. Son, H. T.Chung, S. J. Kim, C. H. Lee, H. G.Kim,
Solid State Comm., (2004 ),129,p.311.
[60] Zhongqing Jiang , Zhong-jie Jiang, Journal of Alloys and
Compounds,(2012), p.308-317.
[61] Z. Chen, J. R. Dahn, J. Electrochem. Soc., (2002),p.149.
[62] 馬振基,奈米材料科技原理與應用,全華科技出版社,民92年。
[63] 微粉應用技術科技研討會論文集,1999年,p.1-11。
[64] Hirai, H., Y. Nakao and N. Toshima. Preparation of Colloidal
Transition Metals in Polymers by Reduction with Alcohols or
Ethers, J. Macromol. Sci-Chem., (1979), p. 727.
[65] Pillai, Z. S. and Kamat. P. V. J. Phys. Chem. B., (2004), 108,p.945.
[66] 賴岳生,奈米銀/鈀微粒之化學合成與其特性分析之研究,
國立清華大學工程研究所碩士論文,2003年。
[67] Zeena, S. P., and prashant, V. K., What Factors Control the Size and
Shape of Silver Nanoparticals in the Citrate Ion Reduction Method,
J. Phy. Chem. B, (2004), p.194-951.
[68] Aleksandra N. Krkljes , Milena T. Marinovic -Cincovic , Zorica M.
Kacarevic-Popovic, Jovan M. Nedeljkovic, Macromolecular
Nanotechnology,(2007), p. 2171-2176.
[69] Rong He, Xuefeng Qian, Jie Yin and Zikang Zhu, Preparation of
polychrome silver nanoparticles in different solvents, Journal of
Materials Chemistry, (2002).
[70] H.S.Shin, H. J. Yang, S. B. Kim, M. S. Lee, Mechanism of growth
of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone
in &; gamma-irradiated silver nitrate solution, Journal of colloid and
interface science ,( 2004),274, p.89.
[71] H.Wang, Mechanism of PVP in the preparation of silver
nanoparticles, Materials Chemistry and Physics, (2005),
94,p.449-453.
[72] Silvert, P. Y., V. Vijayakrishnan, P. Vibert, R. Herrera-Urbina and K.
T. Elhsissen,&;quot;Synthesis and Characterization of Nanoscale Ag-Pd
Alloy Particles&;quot;, Nanostructures Materials, (1996) ,p. 611.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top