跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/20 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳智
研究生(外文):Jia-Zhi Chen
論文名稱:分子束磊晶下之 鍺錫/鍺 超晶格特性探討
論文名稱(外文):Characteristics of Ge1-xSnx/Ge superlattices on Ge buffered on Si (001) wafers grown by Molecular Beam Epitaxy
指導教授:張亞中張亞中引用關係
口試委員:洪冠明余英松孫剛鄭鴻祥
口試日期:2013-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:49
中文關鍵詞:分子束磊晶鍺錫合金超晶格應力DFT
外文關鍵詞:MBEGeSn alloysSuperlatticeStrainDFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇文章為利用低溫分子束磊晶技術,磊晶出一系列高品質之低維度結構之 鍺錫/鍺 超晶格結構並對其作特性分析。我們在矽晶圓上先成長高品質之鍺緩衝層作為虛擬基板以減少晶格不匹配效應,再成功地生長 鍺錫/鍺 週期性超晶格結構。從穿透式電子顯微鏡、原子力顯微鏡、反射式高能量電子繞射、高解析X射線繞射技術、拉曼光譜量測中得到樣品結構及應力特性,再接著利用傅立葉轉換紅外線光譜儀、光激發螢光光譜、光調制反射光譜得到其光學特性,最後在第一原理基礎下使用DFT原理計算出 鍺錫/鍺 超晶格之能隙與實驗結果比較,此外也利用光學上之實驗數據去擬合 鍺錫/鍺 異質接面之傳導帶偏移比例。本篇研究主要探討在鍺錫合金技術中之低維度結構特性,進而應用於矽光子學中之光電元件。


We report the characteristics of Ge1-xSnx/Ge strained layer superlattices ( ) pseudomorphically grown on Ge-buffered on Si(001) wafers by molecular beam epitaxy at low temperature. The crystal quality of the Ge1-xSnx/Ge superlattices was characterized by transmission electron microscopy, atomic force microscopy, and reflection high-energy electron diffraction. The composition and strain states were analyzed by x-ray diffraction and Raman microscopy. The optical spectra were measured by Fourier transform infrared spectroscopy, Photoluminescence, and Photoreflectance to determine the lowest direct-gap transition energies. The observed blue shifts of lowest direct-gap transition energies are attributed to the quantum confinement effect and strain effect, confirmed by our theoretical results using DFT theory. In addition, we also fit the conduction band offset ratio of GeSn/Ge heterostructure by the results of the optical experiments. In this thesis, low dimensional heterostructure of newly group IV material system is investigated. Ge1-xSnx/Ge superlattices are demonstrated by technique of low temperature growth using by Molecular Beam Epitaxy, and presenting characteristics of strained Ge1-xSnx/Ge superlattices (SLs) on Si substrates with x up to 6.96 %. Move a step forward toward the low dimensional Sn-based group IV photonic devices.

Contents
口試委員審定書...............................................#
誌謝 ............................................. .i
中文摘要 ...................................ii
Abstract ......................................iii
Contents .....................................iv
List of Figures ...........................vi
List of Tables ...........................viii

Chapter 1 Introduction
1.1 Motivation................................1
1.2 Germanium................................3
1.3 GeSn alloy techniques...............5


Chapter 2 Growth Equipments and Characterization Techniques
2.1 Molecular Beam Epitaxy............7
2.2 Transmission Electron Microscopy & Atomic Force Microscopy.......9
2.3 X-ray diffraction........................11
2.4 Raman scattering.......................12
2.5 Fourier Transform Infra-Red spectroscopy........................................14
2.6 Photoluminescence & Photoreflectance...................................16


Chapter 3 Structural Properties of GeSn/Ge superlattices
3.1 Crystal growth..........................17
3.2 Transmission Electron Microscopy & Atomic Force Microscopy.....20
3.3 Strain & Composition determination..........................................23
3.4 Raman effect...............................28


Chapter 4 Optical Properties of Ge1-xSnx/Ge superlattices
4.1 Fourier Transform Infra-Red spectroscopy.........................................32
4.2 Photoluminescence & Photoreflectance......................................36
4.3Band structures and conduction band offset ratio of Ge1-xSnx/Ge superlattices.....................................42

Chapter 5 Conclusion and Future Work
5.1 Conclusion...............................43
5.2 Future Work..............................46

Bibliography.................................47









Bibliography

[1] G. Moore, "Cramming more components onto integrated circuits, " Electronics 38, 14417 (1965)

[2] F. Catthoor, A. Cuomo, G. Martin, P. Groeneveld, L. Rudy, K. Maex, P. van de Steeg, R. Wilson, "How can system level design solve the interconnect technology scaling problem, " Proceedings of the conference on Design, automation and test in Europe, p.10332, February 16-20, (2004)
[3] M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Debarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, " Enhanced photoluminescence of heavily n-doped germanium, " Appl. Phys. Lett. 94, 191107 (2009)
[4] Jain J R, Hryciw A, Baer T M, Miller D A B, Brongersma M L and Howe R T, "A micromachining-based technology for enhancing germanium light emission via tensile strain, " Nature Photonics 6 398–405 (2012)

[5] J. Mathews , R. T. Beeler , J. Tolle , C. Xu , R. Roucka , J. Kouvetakis and J. J. Menendez, " Direct-gap photoluminescence with tunable emission wavelength in Ge1−ySny alloys on silicon, " Appl. Phys. Lett. 97, 221912 (2010)

[6] A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, "GeSn/Ge heterostructure short-wave infrared photodetectors on silicon," Opt. Express 20, 27297-27303 (2012).

[7] V. Mashanov, V. Ulyanov, V. Timofeev, A. Nikijorov, O. Pchelyakov, I. S. Yu, and H. H. Cheng, "Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy, " Nanoscale Res Lett. 6(1), 85. (2011)



[8] S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, S. Zaima, "Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates, " Semicond. Sci. Tech., 22 (1) (2007), pp. S231–S235

[9] Jay Deep Sau and Marvin L. Cohen, "Possibility of increased mobility in Ge-Sn alloy system, "Phys. Rev. B 75 045208 (2007)
[10] E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, "Growth of silicon based germanium tin alloys, "Thin Solid Films 520, 3195 (2012)
[11] D. W. Jenkins and J. D. Dow, "Electronic properties of metastable GexSn1-x alloys, " Phys. Rev. B, vol. 36, no. 15, pp.7994, (1987)
[12] P. Moontragoon, Z. Ikonić and P. Harrison, “Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials”, Semicond. Sci. Technol., vol. 22, pp. 742, (2007)

[13] S. Gupta et al., “GeSn Technology: Extending Ge Electronics Roadmap” in IEDM Tech. Digest., 2011, pp. 398.

[14] W.-J. Yin, X.-G. Gong and S.-H. Wei, “Origin of unusually large band-gap bowing and the breakdown of the band-edge distribution rule in SnxGe1-x alloys”, Phys. Rev. B, vol. 78, pp.161203, (2008)
[15] A. Y. Cho, J. R. Arthur, Prog. Solid State Chem. 10,157 (1975)
[16] H. R‥ucker and M. Methfessel, Phys. Rev. B, 52, 11059 (1995)
[17] J. Men’endez, A. Pinczuk, J. Bevk, and J. P. Mannaerts, J. Vac, Sci. Technol. B, 6, 1306 (1988)

[18] S. Su, W. Wang, B. Cheng, W. Hu, G. Zhang, C. Xue, Y. Zuo, and Q. Wang, Solid State Commun. 151, 647 (2011)

[19] J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and J. Menendez, Direct-gap photoluminescence with tunable emission wavelength in Ge1-ySny alloys on silicon, Appl. Phys. Lett. 97, 221912 (2010)
[20] A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, "GeSn/Ge heterostructure short-wave infrared photodetectors on silicon," Opt. Express 20, 27297-27303 (2012)

[21] Hai Lin, Robert Chen, Weisheng Lu, Yijie Huo, Theodore I. Kamins, and James S. Harris, Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy Appl. Phys. Lett. 100, 102109 (2012)

[22] F. Tran and P. Blaha, Physical Review Letters 102, 226401 (2009).

[23] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universit‥at Wien, Austria), (2001) ISBN 3-501032-1-2.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top