跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張斐涵
研究生(外文):Fei-Han Chang
論文名稱:水稻之OsMADS34及OsCP7基因大量表現對穗發育之影響
論文名稱(外文):Overexpression of OsMADS34 and OsCP7 affecting panicle development in rice
指導教授:陳良築
指導教授(外文):Liang-Jwu Chen
口試委員:鍾美珠王強生
口試委員(外文):Mei-Chu ChungChan-Sen Wang
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:半胱胺酸蛋白酶早開花節間縮短
外文關鍵詞:OsMADS34cysteine proteaserice
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
篩選自Taiwan Rice Insertional Mutant library (TRIM library)中的T-DNA突變株M52048具有矮株、早開花、節彎曲和穗無法完全抽出之特殊性狀,根據順向遺傳學證明含有加強子的T-DNA插在水稻第三號染色體上,活化T-DNA插入位兩側的OsMADS14、OsMADS34和一putative cysteine protease,後稱為OsCP7。OsMADS14和OsMADS34皆屬於MADS-box基因家族,為調控水稻開花機制及花器生長發育的轉錄因子。OsMADS14屬於MADS-box家族的A群基因,作用在光週期調控下游,可促使水稻開花,走向生殖生長期,其調控機制已被研究得相當透徹;OsMADS34則屬於MADS-box家族的E群基因,可結合其他MADS-box基因以調控穗及花器的發育。OsCP7經序列比對為一cysteine protease,並經活性測試確定具有protease功能,但其在水稻中所扮演的生理功能仍未明朗。
目前實驗室已有前人構築分別大量表現上述三個基因的轉殖株,分別為Ubi:OsMADS14、Ubi:OsMADS34和OsCP7:OsCP7。Ubi:OsMADS14造成轉殖株矮株和極早開花,此性狀與過去對其功能研究的結果相符合。而在Ubi:OsMADS34轉殖株則出現有早開花、穗無法完全抽出的性狀,穗無法正常抽出主要是由於第一節間縮短所造成,過去有研究指出乾旱環境造成ABA的累積可導致穗無法完全抽出之性狀,且RNA microarray顯示Ubi:OsMADS34中與乾旱逆境有關之基因,如DREB1A,DREB1E及EATB,表現量有所提升,因此進一步對轉殖株施予外加ABA inhibitor 與GA的處理,發現並無法有效延長其第一節間長度而恢復正常抽穗,顯示ABA累積並非造成Ubi:OsMADS34第一節間無法抽長之主因。透過對於節間GA生合成及代謝有關基因與細胞壁生合成相關基因的分析發現,第一節間中GA13ox1 (將GA生合成路徑導向GA1,相對減少GA4,導致植株半矮)表現量上升,同時第一節中EATB (可抑制GA生合成基因,OsCPS2的表現)和EUI1 (可將活性GA去活化)表現量提升,表示節間延長受阻可能和這些調控節間延長相關基因有關,但OsMADS34大量表現導致節間縮短的機制仍然需要更進一步研究。而Ubi:OsMADS34也造成雄蕊抽長較緩慢,顯示OsMADS34亦可能在轉殖株中發揮其class E MADS-box基因之功能,和其他MADS-box基因共同調控花器生長,未來也能往此方向著手,藉由分析OsMADS34交互作用的蛋白質來推測受其調控的基因為何。
擁有典型cysteine protease結構的OsCP7經前人以Ubiquitin及CaMV 35S啟動子構築大量表現OsCP7但無法得到穩定存活之轉殖株後,改採OsCP7上游1.6kb序列作為啟動子構築得到OsCP7:OsCP7轉殖株,其性狀有略晚抽穗和種子黑斑且稔實率低下,之後透過找出T-DNA插入位證實上述性狀與基因型為正相關,驗證了OsCP7:OsCP7-5的性狀與基因型具有相關性,造成這些性狀之機制須更進一步研究。
The T-DNA mutant M52048 identified from Taiwan Rice Insertional Mutant (TRIM) library showed dwarf, early flowering, node bending and impaired in panicle exertion. Three flanking genes, OsMADS34, OsMADS14 and OsCP7 (putative cysteine protease 7) were activated in this mutant. Both OsMADS34 and OsMADS14 belong to MADS-box gene family that may participate in regulation of flowering time and the identity of floral organ. OsCP7 encode a putative cysteine protease, belongs to C1A cysteine protease family, its function remains unknown. In this study the function of OsMADS34 and OsCP7 were further investigated.
Previous study showed that over-expression of OsMADS34, Ubi:OsMADS34 transgenic rice, could cause slightly early flowering and impaired in panicle exertion. Morphological dissection indicated that the impaired in panicle exertion was mainly caused by shortening the first internode (peduncle). Inhibition of the peduncle elongation caused by drought stress and ABA accumulation has been reported. In the present study, some drought-related genes, such as DREB1A, DREB1E and EATB, were regulated in Ubi:OsMADS34 transgenic rice and therefore hypothesized that the phenotype of transgenic rice may regulated by drought stress or plant hormones. However, treated transgenic rice with ABA inhibitor and/or GA could not improve the peduncle elongation and panicle exertion, suggested that the shortened peduncle and impaired in panicle exertion in Ubi:OsMADS34 transgenic rice might not cause by ABA accumulation. Analysis of GA biosynthesis related genes and the cell elongation promoting genes, at the internodes, revealed high expression levels of EATB, EUI1, GA13ox1, GA20ox2, OsPK1 and lower expression of XTH28, suggested that the shortened internode might due to the imbalance expression of these genes. However the mechanism how these genes involved in internode elongation remain to be elucidated. In addition to the shortened peduncle, the anther development was also affected in Ubi:OsMADS34, suggesting that OsMADS34 function as an E class MADS-box gene may interact with other MADS-box genes to regulate the floral organ development. Further study by searching OsMADS34 interaction proteins will help us to unravel the possible function of OsMADS34.
For the study of OsCP7 gene, we were unable to obtained stable transgenic rice lines with constitutive promoter constructs, suggesting that constitutively ectopic expression of OsCP7 might cause lethal. Instead, transgenic lines with a 1.6 kb of OsCP7 promoter construct, OsCP7:OsCP7, were successfully obtained. OsCP7:OsCP7 revealed slightly dwarf, delayed flowering, lesion-like spots on panicles and lower fertility, and these phenotypes are correlated to the expression of OsCP7 gene. The possible mechanisms that cause these aberrant panicle developments were under investigated.
中文摘要 i
英文摘要 ii
目錄 iii
表目次 vi
圖目次 vi
附表 vii
附圖 vii
縮寫字對照表 viii

前言 1
前人研究 2
一、水稻基因功能探討 2
二、MADS-box基因 2
三、ABCDE類型之MADS-box基因 3
四、OsMADS34相關研究 4
五、MADS-box基因與植物賀爾蒙之關係 4
六、水稻節間延長 5
七、Cysteine protese之分類 6
八、Papain-like cysteine protease (PLCP) 6
九、Cysteine protease與植物的計畫性細胞凋亡 (Programmed cell death, PCD) 7
十、OsCP7相關研究 7
材料與方法 9
一、實驗藥品 9
二、儀器與設備 9
三、T-DNA插入水稻突變株之栽種 9
四、水稻轉殖株之構築 9
五、水稻轉殖基因分析 11
六、花粉活性測試 14
七、節間切片觀察 14
結果 15
壹、水稻OsMADS34之基因研究 15
一、 Ubi:OsMADS34之外表性狀觀察 15
二、 TNG67與Ubi:OsMADS34之稻穗結構比較 15
三、 TNG67與Ubi:OsMADS34之節間延長分析 15
四、TNG67與Ubi:OsMADS34 之稔實率與花粉活性分析 16
五、TNG67與Ubi:OsMADS34 之花器形態觀察 16
六、TNG67與Ubi:OsMADS34之節間切片觀察 17
七、Ubi:OsMADS34之節間延長相關基因表現分析 17
八、以生物資訊方式分析可供OsMADS34結合之cis-element 18
九、Ubi:HA-OsMADS34 構築及分析 18
貳、水稻OsCP7之基因研究 19
一、35S:OsCP7 之分析 20
二、35S:OsCP7-6xHis tag之分析 20
三、OsCP7:OsCP7 轉殖株之分析 21
討論 23
一、大量表現OsMADS34提早水稻抽穗 23
二、大量表現OsMADS34對稻穗結構無明顯影響 23
三、大量表現OsMADS34造成節間生長異常 23
四、大量表現OsMADS34影響稔實、花粉活性及穎花生長 24
五、大量表現OsMADS34影響節間結構 26
六、大量表現OsMADS34影響細胞延長的相關酵素表現 26
七、大量表現OsMADS34影響GA代謝基因的調控 27
八、可能受OsMADS34蛋白結合之cis-element分析 28
九、Ubi:HA- OsMADS34轉殖株確認大量表現HA- OsMADS34 28
十、過度表現OsCP7造成水稻死亡 29
十一、異位表現OsCP7造成水稻穎花黑斑及稔實率低下 30
十二、OsCP7:OsCP7-5之外表型與基因型之間具有正相關性 30
結論 32
參考文獻 33
王俊達. (2013). 異位大量表現OsMADS45轉殖株之分子調控與農藝性狀. 中興大學生命科學研究所博士論文, 86.
李咨胤. (2010). 水稻T-DNA插入突變體M52048分析及其活化的三個基因OsMADS14, OsMADS34及OsCP7之功能研究. 中興大學分子生物學研究所碩士論文, 86.
陳柏儒. (2008). 利用 T-DNA 插入突變體探討水稻基因之功能 – 穀粒發育異常突變體 M0039314 之功能分析. 中興大學分子生物研究所碩士論文.
楊琇淳. (2009). 水稻半胱胺酸蛋白酶功能之研究. 台灣大學農藝學研究所碩士論文, 86.
羅舜芳. (2008). 利用T-DNA插入性突變株探討水稻中GA 2-oxidase, MADS14, MADS34和Flavonoid 3'-hydroxylase之功能. 中興大學分子生物學研究所博士論文, 166.
黃建富. (2013). 異位表現OsMADS34及OsCP7基因導致水稻穗生長異常之探討. 中興大學分子生物研究所碩士論文.
Agrawal, G.K., Abe, K., Yamazaki, M., Miyao, A., and Hirochika, H. (2005). Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant molecular biology 59, 125-135.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.
Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. U. S. A. 97, 5328-5333.
Arora, R., Agarwal, P., Ray, S., Singh, A.K., Singh, V.P., Tyagi, A.K., and Kapoor, S. (2007). MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8, 242.
Canut, H., Dupré, M., Carrasco, A., and Boudet, A.M. (1987). Proteases of Melilotus alba mesophyll protoplasts. Planta 170, 541-549.
Chhun, T., Aya, K., Asano, K., Yamamoto, E., Morinaka, Y., Watanabe, M., Kitano, H., Ashikari, M., Matsuoka, M., and Ueguchi-Tanaka, M. (2007). Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19, 3876-3888.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G., and Jang, S.K. (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant molecular biology 40, 419-429.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
Cosgrove, D.J. (1997). Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. The Plant cell 9, 1031-1041
Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G., and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J. 61, 767-781.
Dai, M., Zhao, Y., Ma, Q., Hu, Y., Hedden, P., Zhang, Q., and Zhou, D.X. (2007). The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol. 144, 121-133.
Desikan, R., Reynolds, A., Hancock, J.T., and Neill, S.J. (1998). Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem. J. 330 ( Pt 1), 115-120.
Dreni, L., Jacchia, S., Fornara, F., Fornari, M., Ouwerkerk, P.B., An, G., Colombo, L., and Kater, M.M. (2007). The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. The Plant journal : for cell and molecular biology 52, 690-699.
Duan, K., Li, L., Hu, P., Xu, S.P., Xu, Z.H., and Xue, H.W. (2006). A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant J. 47, 519-531.
Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751-763.
Earnshaw, W.C. (1995). Nuclear changes in apoptosis. Curr. Opin. Cell Biol. 7, 337-343.
Ferrario, S., Immink, R.G., and Angenent, G.C. (2004). Conservation and diversity in flower land. Current opinion in plant biology 7, 84-91.
Fincher, G.B. (1989). Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Biol. 40, 305-346.
Fukao, T., and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences of the United States of America 105, 16814-16819.
Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol. 153, 728-740.
Gillmor, S.A., Craik, C.S., and Fletterick, R.J. (1997). Structural determinants of specificity in the cysteine protease cruzain. Protein Sci. 6, 1603-1611.
Greenberg, J.T. (1996). Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. U. S. A. 93, 12094-12097.
Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. (1994). Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77, 551-563.
Groves, M.R., Taylor, M.A., Scott, M., Cummings, N.J., Pickersgill, R.W., and Jenkins, J.A. (1996). The prosequence of procaricain forms an alpha-helical domain that prevents access to the substrate-binding cleft. Structure 4, 1193-1203.
Guo, S., Xu, Y., Liu, H., Mao, Z., Zhang, C., Ma, Y., Zhang, Q., Meng, Z., and Chong, K. (2013). The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4, 1566.
Gupta, P., Raghuvanshi, S., and K TYAGI, A. (2001). Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol. 18, 275-282.
Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030.
Hedden, P., and Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5, 523-530.
Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol. 63, 351-364.
Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., Kitano, H., Matsuoka, M., and Kobayashi, M. (2001). Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc. Natl. Acad. Sci. U. S. A. 98, 8909-8914.
Iwamoto, M., Baba-Kasai, A., Kiyota, S., Hara, N., and Takano, M. (2010). ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ 33, 805-815.
Iwamoto, M., Kiyota, S., Hanada, A., Yamaguchi, S., and Takano, M. (2011). The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiol. 157, 1187-1195.
Jack, T. (2001). Plant development going MADS. Plant Mol. Biol. 46, 515-520.
Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Lee, S., Yang, K., Nam, J., An, K., Han, M.J., Sung, R.J., Choi, H.S., Yu, J.H., Choi, J.H., Cho, S.Y., Cha, S.S., Kim, S.I., and An, G. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570.
Kaufmann, K., Muino, J.M., Jauregui, R., Airoldi, C.A., Smaczniak, C., Krajewski, P., and Angenent, G.C. (2009). Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 7, e1000090.
Khanday, I., Yadav, S.R., and Vijayraghavan, U. (2013). Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. Plant Physiol. 161, 1970-1983.
Kinoshita, T., Yamada, K., Hiraiwa, N., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (1999). Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J. 19, 43-53.
Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H., and Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol. 51, 47-57.
Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. (2012). Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24, 1848-1859.
Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747.
Lamb, C., and Dixon, R.A. (1997). The Oxidative Burst in Plant Disease Resistance. Annu Rev Plant Physiol Plant Mol Biol 48, 251-275.
Lee, S., Choi, S.C., and An, G. (2008). Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J. 54, 93-105.
Lee, S., Jung, K.H., An, G., and Chung, Y.Y. (2004). Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol. Biol. 54, 755-765.
Leist, M., and Jaattela, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2, 589-598.
Li, J., Jiang, J., Qian, Q., Xu, Y., Zhang, C., Xiao, J., Du, C., Luo, W., Zou, G., Chen, M., Huang, Y., Feng, Y., Cheng, Z., Yuan, M., and Chong, K. (2011). Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23, 628-640.
Lim, J., Moon, Y.H., An, G., and Jang, S.K. (2000). Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 44, 513-527.
Lohman, K.N., Gan, S., John, M.C., and Amasino, R.M. (1994). Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 92, 322-328.
Magome, H., Nomura, T., Hanada, A., Takeda-Kamiya, N., Ohnishi, T., Shinma, Y., Katsumata, T., Kawaide, H., Kamiya, Y., and Yamaguchi, S. (2013). CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc. Natl. Acad. Sci. U. S. A. 110, 1947-1952.
Martinez, D.E., Bartoli, C.G., Grbic, V., and Guiamet, J.J. (2007). Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. J Exp Bot 58, 1099-1107.
Martinez, M., Cambra, I., Gonzalez-Melendi, P., Santamaria, M.E., and Diaz, I. (2012). C1A cysteine-proteases and their inhibitors in plants. Physiol Plant 145, 85-94.
Metraux, J.P., and Kende, H. (1983). The role of ethylene in the growth response of submerged deep water rice. Plant Physiol. 72, 441-446.
Muthurajan, R., Shobbar, Z.S., Jagadish, S.V., Bruskiewich, R., Ismail, A., Leung, H., and Bennett, J. (2011). Physiological and proteomic responses of rice peduncles to drought stress. Molecular biotechnology 48, 173-182.
Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H., and Nagato, Y. (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130, 705-718.
Olszewski, N., Sun, T.P., and Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 Suppl, S61-80.
Otegui, M.S., Noh, Y.S., Martinez, D.E., Vila Petroff, M.G., Staehelin, L.A., Amasino, R.M., and Guiamet, J.J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J. 41, 831-844.
Paris, N., Stanley, C.M., Jones, R.L., and Rogers, J.C. (1996). Plant cells contain two functionally distinct vacuolar compartments. Cell 85, 563-572.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203.
Peterson, L.W., and Huffaker, R.C. (1975). Loss of Ribulose 1,5-Diphosphate Carboxylase and Increase in Proteolytic Activity during Senescence of Detached Primary Barley Leaves. Plant Physiol. 55, 1009-1015.
Qi, W., Sun, F., Wang, Q., Chen, M., Huang, Y., Feng, Y.Q., Luo, X., and Yang, J. (2011). Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol. 157, 216-228.
Raskin, I., and Kende, H. (1984). Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol. 76, 947-950.
Rawlings, N.D., Barrett, A.J., and Bateman, A. (2010). MEROPS: the peptidase database. Nucleic Acids Res 38, D227-233.
Richau, K.H., Kaschani, F., Verdoes, M., Pansuriya, T.C., Niessen, S., Stuber, K., Colby, T., Overkleeft, H.S., Bogyo, M., and Van der Hoorn, R.A. (2012). Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol. 158, 1583-1599.
Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.H., An, G., Kitano, H., Ashikari, M., and Matsuoka, M. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896-1898.
Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., and Matsuoka, M. (2002). Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701-702.
Senatore, A., Trobacher, C.P., and Greenwood, J.S. (2009). Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol. 149, 775-790.
Sequencing Project, I.R.G. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Swanson, S.J., Bethke, P.C., and Jones, R.L. (1998). Barley aleurone cells contain two types of vacuoles. Characterization Of lytic organelles by use of fluorescent probes. Plant Cell 10, 685-698.
Tapia-Lopez, R., Garcia-Ponce, B., Dubrovsky, J.G., Garay-Arroyo, A., Perez-Ruiz, R.V., Kim, S.H., Acevedo, F., Pelaz, S., and Alvarez-Buylla, E.R. (2008). An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol. 146, 1182-1192.
Theissen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75-85.
Theissen, G., and Melzer, R. (2007). Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100, 603-619.
Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693-698.
van der Hoorn, R.A. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59, 191-223.
van der Hoorn, R.A., Leeuwenburgh, M.A., Bogyo, M., Joosten, M.H., and Peck, S.C. (2004). Activity profiling of papain-like cysteine proteases in plants. Plant Physiol. 135, 1170-1178.
Vernet, T., Khouri, H.E., Laflamme, P., Tessier, D.C., Musil, R., Gour-Salin, B.J., Storer, A.C., and Thomas, D.Y. (1991). Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J. Biol. Chem. 266, 21451-21457.
Wang, K., Tang, D., Hong, L., Xu, W., Huang, J., Li, M., Gu, M., Xue, Y., and Cheng, Z. (2010). DEP and AFO regulate reproductive habit in rice. PLoS genetics 6, e1000818.
West, A.G., Shore, P., and Sharrocks, A.D. (1997). DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending. Mol. Cell. Biol. 17, 2876-2887.
Willige, B.C., Ghosh, S., Nill, C., Zourelidou, M., Dohmann, E.M., Maier, A., and Schwechheimer, C. (2007). The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19, 1209-1220.
Yamaguchi, T., and Hirano, H.Y. (2006). Function and diversification of MADS-box genes in rice. ScientificWorldJournal 6, 1923-1932.
Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., and Hirano, H.Y. (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16, 500-509.
Yamaguchi, T., Lee, D.Y., Miyao, A., Hirochika, H., An, G., and Hirano, H.Y. (2006). Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18, 15-28.
Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591-1606.
YANG, J.-C., Liu, K., ZHANG, S.-F., WANG, X.-M., WANG, Z.-Q., and LIU, L.-J. (2008a). Hormones in rice spikelets in responses to water stress during meiosis. Acta Agronomica Sinica 34, 111-118.
Yang, M., Qi, W., Sun, F., Zha, X., Chen, M., Huang, Y., Feng, Y.Q., Yang, J., and Luo, X. (2013). Overexpression of rice LRK1 restricts internode elongation by down-regulating OsKO2. Biotechnol Lett 35, 121-128.
Yang, X., Sun, C., Hu, Y., and Lin, Z. (2008b). Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J Biosci 33, 103-112.
Yang, X.C., and Hwa, C.M. (2008). Genetic modification of plant architecture and variety improvement in rice. Heredity (Edinb) 101, 396-404.
Yang, Y., Fanning, L., and Jack, T. (2003). The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J. 33, 47-59.
Yokoyama, R., Rose, J.K., and Nishitani, K. (2004). A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol. 134, 1088-1099.
Zhang, D.S., Liang, W.Q., Yuan, Z., Li, N., Shi, J., Wang, J., Liu, Y.M., Yu, W.J., and Zhang, D.B. (2008). Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1, 599-610.
Zhang, Y., Xiao, W., Luo, L., Pang, J., Rong, W., and He, C. (2012). Downregulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA insertion causes dwarfism and panicle enclosure in rice. Planta 235, 25-38.
Zheng, Y., Ren, N., Wang, H., Stromberg, A.J., and Perry, S.E. (2009). Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21, 2563-2577.
Zhou, H.L., He, S.J., Cao, Y.R., Chen, T., Du, B.X., Chu, C.C., Zhang, J.S., and Chen, S.Y. (2006). OsGLU1, a putative membrane-bound endo-1,4-beta-D-glucanase from rice, affects plant internode elongation. Plant Mol. Biol. 60, 137-151.
Zhu, Y., Nomura, T., Xu, Y., Zhang, Y., Peng, Y., Mao, B., Hanada, A., Zhou, H., Wang, R., Li, P., Zhu, X., Mander, L.N., Kamiya, Y., Yamaguchi, S., and He, Z. (2006). ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442-456
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊