跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宇祥
研究生(外文):Yu-HsiangYang
論文名稱:複合式生物復育技術應用於油汙土壤之離場整治
論文名稱(外文):Multiple Biodegradation Technology applied to Ex-situ bioremediation of Petroleum Contaminated Soil
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:164
中文關鍵詞:生物復育生物優植生物刺激廚餘堆肥真菌
外文關鍵詞:BioremediationBioagumentationBiostimulationKitchen waste compostFungi
相關次數:
  • 被引用被引用:4
  • 點閱點閱:678
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
長期受總石油碳氫化合物(TPH)汙染之土壤,在生物復育過程中會發生降解遲滯的現象,因而造成復育時間過長、殘餘濃度過高等問題。本研究利用添加生物菌劑和助劑以及添加廚餘堆肥(含有豐富的微生物菌相,包含細菌和真菌)之策略應用於模場整治,並驗證其效果。另外於實驗室啟動批次土罐試驗,探討不同發酵溫度的廚餘堆肥對於長期受總石油碳氫化合物汙染土壤之降解成效。
本研究在模場KH200以生物堆法加土耕法的方式,配合兩組策略進行整治復育。策略一使用生物優植(添加生物菌劑)及生物刺激(添加生物助劑)的生物復育技術並在降解遲滯現象發生時添加廚餘堆肥進行再次降解,結果顯示在125天的整治時期完成後,(初始濃度1,314 mg/kg dry soil)能達到36%的去除效率;而策略二係僅添加廚餘堆肥的整治策略(初始濃度971 mg/kg dry soil)同樣也達到36%的去除效率。但在模場試驗中發現,策略一添加廚餘堆肥於降解遲滯期,沒有得到顯著的成效,而策略二添加廚餘堆肥卻有顯著的降解效果。於是利用微矩陣生物晶片監測廚餘堆肥,發現夏季所採取的廚餘堆肥中含有的真菌種類及數量遠大於冬季所採取的廚餘堆肥,並由實驗室批次的TPH降解結果,夏季時所添加的廚餘堆肥對於TPH去除率達65%大於冬季時的去除率21% 相互印證。另一方面,添加不同發酵溫度的廚餘堆肥於長期受總石油碳氫化合物汙染土壤,並比較其降解成效。結果受柴油汙染之油汙土壤(初始濃度12,132 mg/kg dry soil),添加冷卻成熟期(cooling mature phase)的廚餘堆肥有較好的降解效果,去除率達到88%。而受燃料油汙染之油汙土壤(初始濃度17,262 mg/kg dry soil),添加冷卻成熟期(cooling mature phase)的廚餘堆肥也有較好的降解效果,去除率達到63%。

Soils contaminated with petroleum hydrocarbon for a long time period will encountered a problem with high residual concentration which mostly took a long time to remediate. During a bioremediation process, most of the biodegradable total petroleum hydrocarbon (TPH) was usually depleted during the first stage and after a rapid degradation process, the slow depletion process, lag phase, will occur in the second-stage.

The objective of this study was to applied a bioremediation strategy in order to explore a better treatment process. Bioaugmentation with various bacteria inoculation, biosurfactant and biostimulation with kitchen waste (KW) compost amendments to enhanced a remediation of an aged hydrocarbon-contaminated soil at field scale ex-situ remediation. At a same time, in addition to comparing the removal efficiency of TPH, laboratory scale experiment was conducted with different fermented period of kitchen waste (KW) compost amendments.

The KH200 pilot study performed by combining a two strategies to remediate the contaminant with landfarming treatment and biopiles. The strategy 1 is to applied a bioagumentation and biosurfactant at the first phase and when the lag phase occurs kitchen waste (KW) compost introduced to the biopiles to enhanced the biodegradation performance. After 125 day, the removal efficiency was 36% (initial concentration 1,314 mg TPH/kg dry soil). The strategy 2 is only kitchen waste (KW) compost amendments, the removal efficiency was 36% (initial concentration 971 mg/kg dry soil), similar to previous strategy. The results on kitchen waste (KW) compost amendments in the two strategies are practically different. Therefore using molecular technology (microarray) to monitored kitchen waste (KW) compost amendments, the result discovered that kitchen waste (KW) compost amendments applied with kitchen waste (KW) compost sampling time conducted at summer consists of more diverse fungus type and the quantity of the microorganisms are bigger than when kitchen waste (KW) compost sampling time conducted in winter. The experiments adding kitchen waste compost to degrade TPH concentration was conducted in laboratory scale, the result shown that the TPH removal efficiency was 65% in summer and 21% in winter, respectively.

On the other hand, different fermented period (temperature condition) of kitchen waste (KW) compost amendments to aged TPH contaminated soil also introduced to compared the results of TPH degradation. From the batch test result, the best TPH removal efficiency was achieved with kitchen waste (KW) compost amendments at cooling mature phase. In diesel contaminated soil (initial concentration 12,132 mg TPH/kg dry soil), the TPH removal efficiency was 88% whilst in fuel oil contaminated soil (initial concentration 17,262 mg TPH/kg dry soil), the TPH removal efficiency was 63%, respectively.

摘要............................................IV
Abstract.......................................VII
誌謝............................................IX
目錄............................................XI
表目錄........................................XIII
圖目錄..........................................XV
第一章 前言...........................................1
第二章 文獻回顧........................................3
2-1 油污染土壤概況介紹.................................3
2-1-1 土壤汙染案例介紹.................................5
2-1-2 土壤污染整治技術應用趨勢.........................10
2-2 生物復育處理油汙染土壤之研究........................13
2-2-1 土壤特性介紹....................................15
2-2-2 總石油碳氫化合物介紹.............................22
2-2-3 土壤中油汙分解能力之微生物介紹....................28
2-3 總石油碳氫化合物之生物可降解性研究 ..................31
2-3-1 影響土壤生物復育之環境因子........................31
2-3-2 生物復育過程遲滯原因及兩階段降解現象探討...........34
2-3-3 油汙土壤兩階段降解現象相關之微生物菌相..............36
2-4 離場生物復育技術整治研究 ...........................37
2-4-1 土壤生物復育技術介紹.............................37
2-4-2 生物界面活性劑應用於碳氫化合物生物降解.............41
2-4-3 系統化環境分子生物技術...........................43
2-5 廚餘堆肥於油汙土壤之降解探討........................45
2-5-1 廚餘堆肥應用於生物復育之探討 .....................45
2-5-2 廚餘堆肥應用之實驗室規模之研究 ...................46
第三章 材料與方法.....................................50
3-1 研究材料.........................................50
3-1-1 總石油碳氫化合物................................50
3-1-2 生物製劑.......................................51
3-2 污染土壤系統分析..................................53
3-2-1 土壤環境因子分析................................53
3-2-2 總石油碳氫化合物分析.............................54
3-2-3 土壤中之微生物菌落計數-平盤計數法 (Plate-counts)...55
3-2-4 掃描式電子顯微鏡(SEM)..............................58
3-3 分子生物技術分析.....................................59
3-3-1 總DNA萃取..........................................59
3-3-2 聚合?酵素鏈鎖反應 (Polymerase chain reaction, PCR)61
3-3-3 尾端修飾限制片段長度多型性 (T-RFLP)................62
3-3-4 微矩陣生物晶片之偵測技術 (Microarray Biochip)......63
3-4 生物復育試驗.........................................65
3-4-1現址離場土耕法生物復育模場研究 KH-200...............65
3-4-2不同濃度污染之風化土壤之複合式生物復育程序..........70
3-4-3廚餘堆肥於風化油汙土壤之複合式生物復育程序..........73
第四章 結果與討論........................................76
4-1 現址離場土耕法生物復育模場研究 KH-200................76
4-1-1 復育期間總石油碳氫化合物之變化探討 ................78
4-1-2 復育期間土壤微生物種類及數量變化探討 ..............83
4-1-3 復育期間土堆降解特性比較 ..........................95
4-2 不同濃度污染之風化土壤之複合式生物復育程序...........98
4-2-1 總石油碳氫化合物之降解特性探討....................100
4-2-2 生物降解期間微生物菌落數及種類變化趨勢探討........105
-2-3 不同復育方式之降解特性比較.........................123
4-3 廚餘堆肥於風化油汙土壤之複合式生物復育程序 .........129
4-3-1 總石油碳氫化合物之降解特性探討....................131
4-3-2 生物降解期間微生物菌落數及種類變化趨勢探討........134
4-3-3 不同發酵時期堆肥之降解特性比較....................145
4-3-4 不同採樣季節的堆肥之降解特性比較..................149
第五章 結論與建議.......................................152
5-1 結論................................................152
5-2 建議................................................154
參考文獻................................................155
附錄....................................................163
Anastasi, A., Varese, G. C., & Marchisio, V. F. Isolation and identification of fungal communities in compost and vermicompost. Mycologia, 97(1), 33-44. (2005).
Anastasi, A., Varese, G. C., Voyron, S., Scannerini, S., & Marchisio, V. F. Characterization of fungal biodiversity in compost and vermicompost. Compost Science & Utilization, 12(2), 185-191. (2004).
Ang, C. C. and Abdul, A. S., Aqueous Surfactant Washing of Residual Oil Contamination from Sandy Soil. Ground Water Monitoring and Remediation 11(2): 121-127(1991).
April, T. M., Abbott, S. P., Foght, J. M. and Currah, R. S., Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Canadian Journal of Microbiology 44(3): 270-278(1998).
Atagana, H. I. Compost bioremediation of hydrocarbon-contaminated soil inoculated with organic manure. African Journal of Biotechnology, 7(10), 1516-1525. (2008).
Atlas, R. M., Microbial-Degradation of Petroleum-Hydrocarbons - an Environmental Perspective. Microbiological Reviews 45(1): 180-209(1981).
Atlas, R. M., Petroleum Miceobiology. Macmillan Publishing Company New York(1984).
Atlas, R. M., Anassessment of the biodegradation of pertoleum in the Arctic. Microbial Ecology, Springer-Verlag,Berlin,: 86-90(1987).
Atlas, R. M., Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin 31(4-12): 178-182(1995).
Banat, I. M., Makkar, R. S. and Cameotra, S. S., Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology 53(5): 495-508(2000).
Bento, F. M. and Gaylarde, C. C., Biodeterioration of stored diesel oil: studies in Brazil. International Biodeterioration & Biodegradation 47(2): 107-112(2001).
Bidlan, R. and Manonmani, H. K., Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochemistry 38(1): 49-56(2002).
Bossert, I and Bartha, R, The fate of petroleum in soil ecosystems. In: Atlas RM (Ed.). Petroleum Microbiology Macmillan Publishing Company, New York: 435-476(1984).
Cha?neau, C.H., Morel, J. , Dupont, J., Bury, E. and Oudot, J., Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. The Science of the Total Environment 227(2-3): 237-247(1999).
Cha?neau, C.H., Rougeux, G., Y?pr?mian, C. and Oudot, J., Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry 37(8): 1490-1497(2005).
Chaillan, F., Cha?neau, C.H., Point, V., Saliot, A. and Oudot, J., Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environmental Pollution 144(1): 255-265(2006).
Chaillan, F., Gugger, M., Saliot, A., Cout??, A. and Oudot, J., Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 62(10): 1574-1582(2006).
Chaillan, Fr?d?ric, Le Fl?che, Anne, Bury, Edith, Phantavong, Y-hui, Grimont, Patrick, Saliot, Alain and Oudot, Jean, Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in Microbiology 155(7): 587-595(2004).
Chaineau, C. H., Morel, J.-L. and Oudot, J., Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 33(3): 145A(1996).
Chaineau, C. H., Morel, J. L. and Oudot, J., Microbial-Degradation in Soil Microcosms of Fuel-Oil Hydrocarbons from Drilling Cuttings. Environmental Science & Technology 29(6): 1615-1621(1995).
Colwell, RR and Walker, JD, Ecological aspects of microbial degradation of petro leum in the marine environment. CRC critical reviews in microbiology 15: 423-445(1977).
Cooper, DG and Zajic, JE, Surface-active compounds from microorganisms. Advances in applied microbiology 26: 229-253(1980).
EPA, US, Aerobic Biodegradation of Oily Wastes A Field Guidance Book For Federal On-scene Coordinators. (2003).
Gadd, G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111, 3-49. (2007).
Gandolfi, I., Sicolo, M., Franzetti, A., Fontanarosa, E., Santagostino, A., & Bestetti, G. Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresource Technology, 101(2), 568-575. (2010).
Gilgado, F., Cano, J., Gene, J. and Guarro, J., Molecular phylogeny of the Pseudallescheria boydii species complex: Proposal of two new species. Journal of Clinical Microbiology 43(10): 4930-4942(2005).
Gourlay C, Tusseau-Vuillemin MH, Garric J, Mouchel JM Effect of dissolved organic matter of various origins and biodegradability on the bioaccumulation of polycyclic aromatic hydrocarbons in Daphnia magna. Environ Toxicol Chem 22:288–1294(2003)
Haderlein, A., Legros, R., and Ramsay, B. Enhancing pyrene mineralization rates in contaminated soil by addition of composted soil or humic acids. Appl. Microbiol. Biotechnol. 56: 555–559. (2001).
Herman, D. C., Artiola, J. F. and Miller, R. M., Removal of Cadmium, Lead, and Zinc Fron Soil by a Rhamnolipid Biosurfactant. Environmental Science & Technology 29(9): 2280-2285(1995).
Hesnawi, R. M., & McCartney, D. M. Impact of compost amendments and operating temperature on diesel fuel bioremediation. Journal of Environmental Engineering and Science, 5(1), 37-45. (2006).
Isabella, O., Moll, F., Krc, J., & Zeman, M. Modulated surface textures using zinc-oxide films for solar cells applications. Physica Status Solidi a-Applications and Materials Science, 207(3), 642-646. (2010).
Janzen RA, Xing B, Gomez CC, Salloum MJ, Drijber RA, McGill WB Compost extract enhances desorption of a-naphtol and naphthalene from pristine and contaminated soil. Soil Biol Biochem 28:1089–1098(1996)
Kanga, S. A., Bonner, J. S., Page, C. A., Mllls, M. A. and Autenrieth, R. L., Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environmental Science & Technology 31(2): 556-561(1997).
Kastner, M., Lotter, S., Heerenklage, J., Breuer-Jammali, M., Stegmann, R., & Mahro, B. Fate of 14C-labeled anthracene and hexadecane in compost-manured soil. Appl Microbiol Biotechnol, 43(6), 1128-1135. (1995).
Kastner, M., & Mahro, B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol, 44(5), 668-675. (1996a).
Kastner, M., & Mahro, B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Applied Microbiology and Biotechnology, 44(5), 668-675. (1996b).
Kelsey, J. W., Kottler, B. D., & Alexander, M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environmental Science & Technology, 31(1), 214-217. (1997).
Laine, M. M., & Jorgensen, K. S. (1996). Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Applied and Environmental Microbiology, 62(5), 1507-1513.
Leahy, J. G. and Colwell, R. R., Microbial-Degradation of Hydrocarbons in the Environment. Microbiological Reviews 54(3): 305-315(1990).
Lee, Sang-Hwan, Lee, Seokho, Kim, Dae-Yeon and Kim, Jeong-gyu, Degradation characteristics of waste lubricants under different nutrient conditions. Journal of Hazardous Materials 143(1-2): 65-72(2007).
Lee, Sunggyu and Cutright, Teresa, Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Journal of Cleaner Production 3(4): 255(1995).
Mancera-Lopez M.E., Esparza-Garcia F. , Chavez-Gomez B., Rodriguez-Vazquez R. , Saucedo-Castaneda G. and Barrera-Cortes J. , Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Biodeterioration & Biodegradation 61: 151-160(2008).
Marin, J. A., Hernandez, T. and Garcia, C., Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environmental Research 98(2): 185-195(2005).
Menzie, C. A., Potocki, B. B. and Santodonato, J., Exposure to Carcinogenic Pahs in the Environment. Environmental Science & Technology 26(7): 1278-1284(1992).
Namkoong, W., Hwang, E. Y., Park, J. S. and Choi, J. Y., Bioremediation of diesel-contaminated soil with composting. Environmental Pollution 119(1): 23-31(2002).
Ortega-Calvo, J. J., Lahlou, M. and Saiz-Jimenez, C., Effect of organic matter and clays on the biodegradation of phenanthrene in soils. International Biodeterioration & Biodegradation 40(2-4): 101-106(1997).
Oudot J, Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar Environ Res 13: 277-302(1984).
Pacheco, Adriana de O., Kagohara, Edna, Andrade, Leandro H., Comasseto, Jo?o V., Crusius, Iracema H.-S., Paula, Claudete R. and Porto, Andr? L.M., Biotransformations of nitro-aromatic compounds to amines and acetamides by tuberous roots of Arracacia xanthorrhiza and Beta vulgaris and associated microorganism (Candida guilliermondii). Enzyme and Microbial Technology 42(1): 65-69(2007).
Perfumo, A., Banat, I. M., Marchant, R. and Vezzulli, L., Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66(1): 179-184(2007).

Plaza C, Xing B, Ferna?ndez JM, Senesi N, Polo ABinding of polycyclic aromatic hydrocarbons by humic acids formed during composting. Environ Pollut 157:257–263 (2009)
Providenti, M. A., Lee, H. and Trevors, J. T., Selected Factors Limiting the Microbial-Degradation of Recalcitrant Compounds. Journal of Industrial Microbiology 12(6): 379-395(1993).
Quadri G, Chen X, Jawitz JW, Tambone F, Genevini P, Faoro F, Adani F Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE). Environ Sci Technol 42:2618–2623 (2008)
Rahman, K. S. M., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R. and Banat, I. M., Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology 90(2): 159-168(2003).
Reid, B. J., Jones, K. C. and Semple, K. T., Bioavailability of persistent organic pollutants in soils and sediments - a perspective on mechanisms, consequences and assessment. Environmental Pollution 108(1): 103-112(2000).
Roling, W. F. M., Milner, M. G., Jones, D. M., Fratepietro, F., Swannell, R. P. J., Daniel, F. and Head, I. M., Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Applied and Environmental Microbiology 70(5): 2603-2613(2004).
Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., & Swings, J. (2003). Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology, 94(1), 127-137
Sayara, T., Sarra, M., & Sanchez, A. Optimization and enhancement of soil bioremediation by composting using the experimental design technique. Biodegradation, 21(3), 345-356. (2010).
Scelza, R., Rao, M. A., & Gianfreda, L. Effects of compost and of bacterial cells on the decontamination and the chemical and biological properties of an agricultural soil artificially contaminated with phenanthrene. Soil Biology & Biochemistry, 39(6), 1303-1317. (2007).
Scelza, R., Rao, M. A., & Gianfreda, L. Properties of an aged phenanthrene-contaminated soil and its response to bioremediation processes. Journal of Soils and Sediments, 10(3), 545-555. (2010).
Semple, K. T., Cain, R. B. and Schmidt, S., Biodegradation of aromatic compounds by microalgae. Fems Microbiology Letters 170(2): 291-300(1999).
Taylor, L.T. and Jones, D.M., Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44(5): 1131-1136(2001).
Townsend, G. T., Prince, R. C., & Suflita, J. M. Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environmental Science & Technology, 37(22), 5213-5218. (2003).
Van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M. and Witholt, B., Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology-Revue De L Institut Francais Du Petrole 58(4): 427-440(2003).
Vandyke, M. I., Couture, P., Brauer, M., Lee, H. and Trevors, J. T., Pseudomonas-Aeruginosa Ug2 Rhamnolipid Biosurfactants - Structural Characterization and Their Use in Removing Hydrophobic Compounds from Soil. Canadian Journal of Microbiology 39(11): 1071-1078(1993).
Venosa, Albert D. and Zhu, Xueqing, Biodegradation of Crude Oil Contaminating Marine Shorelines and Freshwater Wetlands. Spill Science and Technology Bulletin 8(2): 163-178(2003).
Zhang, Y. M. and Miller, R. M., Enhanced Octadecane Dispersion and Biodegradation by a Pseudomonas Rhamnolipid Surfactant (Biosurfactant). Applied and Environmental Microbiology 58(10): 3276-3282(1992).
Zinjarde, S. S. and Pant, A. A., Hydrocarbon degraders from tropical marine environments. Marine Pollution Bulletin 44(2): 118-121(2002).


馬志強,應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率,國立成功大學環境工程學系(所)碩士論文 (2005)
廖翊廷,應用生物刺激及菌種添加之離場土耕法整治總石油碳氫化合物污染土壤之模場研究,國立成功大學環境工程學系(所)碩士論文 (2007)
潘柏岑,應用土耕法配合生物添加促進法整治柴油污染土壤之研究,國立成功大學環境工程學系(所)碩士論文 (2006)
蔡在唐、胡太龢、陳忠勳、葉宗裕、高志明,評估以加強式生物處理整治受燃料油污染土壤之成效,土壤與地下水研討會 (2006)
鄭幸雄、潘柏岑、廖翊廷、劉保文、黃良銘,應用生物界面活性劑促進柴油污染土壤生物復育之可行性評估及現場驗證,土壤與地下水研討會 (2006)
鄭幸雄,黃良銘,潘柏岑,廖翊廷,高俊璿,受不同比例之柴油與燃料油污染土壤之生物降解探討,環工年會-土壤與地下水研討會 (2007)
高俊璿,高濃度石化油汙染土壤之不同微生物降解三類石油碳氫化合物研究,國立成功大學環境工程學系(所)碩士論文 (2008)
謝宗霖,以兩階段生物整治策略處理受石油碳氫化合物汙染土壤復育之研究,
國立成功大學環境工程學系(所)碩士論文 (2009)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊