| 
Independent Component Analysis Basic Theories [1] Pierre Comon, “Independent component analysis, A new concept?”, Vol. 36, no 3, Special issue on High-Order Statistics, April 1994 [2] Aapo Hyvärinen and Erkki Oja, “Independent Component Analysis: Algorithms and Applications”, Neural Neworks, April 1999 [3] Aapo Hyvärinen, “Survey on Independent Component Analysis” [4] J. F. Cardoso, “Source separation using higher order moments”, Proc. Internal. Conf. Acoust. Speech Signal Process, Glasgow, 1989, pp. 2109-2112. [5] P. Comon, “independent component analysis”, Internal. Signal Processing Workshop out High-Order Statistics, Elsevier, Amsterdam 1992, pp. 29-38. [6] M. Gaeta and J.L. Lacoume, “Source separation without a priori knowledge: The maximum likelihood solution”, in: Torres, Masgrau and Lagunas, eds., Proc EUSIPCO Conf., Barcelona, Elsevier, Amsterdam, 1990, pp. 621-624. [7] Y. Inouye and T. Matsui, “cumulant based parameter estimation of linear systems”, Proc. Workshop Higher-Order Spectral Analysis, Vail, Colorado, June 1989, pp. 180-185. [8] C. Jutten and J. Herault, “Blind separation of sources, Part I: An adaptive algorithm based on neuromimatic architecture”, Signal Processing, Vol. 24, No. 1, July 1991, pp. 1-10. [9] L. Tong et al., “A necessary and sufficient condition of blind identification”, Internal. Signal Processing Workshop on High-Order Statistics, Chamrousse, France, 10-12 July 1991, pp. 261-264. [10]  J.C. Fort, “Stability of the JH sources separation algorithm”, Traitement du Signal, Vol. 8, No. 1, 1991, pp. 35-42 [11]  Y. Bar-Ness, “Bootstrapping adaptive interference cancellers: Some practical limitations”, The Globecom Conf., Miami, November 1982, Paper F3.7, pp. 1251-1255. [12]  G. Giannakis, Y. Inouye and J.M. Mendel, “Cumulant based identification of multichannel moving average models”, IEEE Automat. Control, Vol. 34, July 1989, pp. 783-787 [13]  J.L. Lacoume and P. Ruiz, “Extraction of independent components from correlated inputs, A solution based on cumulants”, Proc Workshop Higher-Order Spectral Analysis, Vail, Colorado, June 1989, pp. 146-151. [14]  M. Gaeta, Les Statistiques d`Ordre Supérieur Appliquées à la Séparation de Sources, Ph.D. Thesis, Université de Grenoble, July 1991. [15]  A. Souloumiac and J.F. Cardoso, “Comparaisons de Méthodes de Séparation de Sources”, XIIIth Coll. GRETSI, September 1991, pp. 661-664. [16]  J.F. Cardoso, “Super-symmetric decomposition of the fourth-order cumulant tensor, blind identification of more sources than sensors”, Proc. Internal. Conf. Acoust. Speech Signal Process. 91, 14-17 May 1991. [17]  J.F. Cardoso, “Iterative techniques for blind sources separation using only fourth order cumulants”, Conf. EUSIPCO, 1992, pp. 739-742. [18]  P. Comon, “Separation of stochastic processes”, Proc. Workshop Higher-Order Spectral Analysis, Vail, Colorado, June 1989, pp. 174-179 [19]  G. Darmois, “Analyse Générale des Liaisons Stochastiques”, Rec. Inst. Internal. Stat., Vol. 21, 1953, pp. 2-8 [20]  L. Fety, Methodes de traitement d’antenne adaptées aux radiocommunications, Doctorate Thesis, ENST, 1998. [21]  L. Tong, V.C. Soon and R. Liu, “AMUSE: A new blind identification algorithm”, Proc, Internal. Conf. Acoust. Soeech Signal Process., 1990, pp. 1783-1787. [22]  C. Jutten., “Calcul neuromimétique et traitement du signal, analyse en composantes independents”, PhD thesis, INPG, Univ. Grenoble, 1987. [23]  C. Jutten and J. Herault. “Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture.”, Signal Processing, 24:1-10, 1991. [24]  Cardoso, J.F., Souloumiac A., "Blind beamforming for non Gaussian signals ",  IEEE Proceedings-F, vol. 140, no. 6, pp. 362-370, December 1993 [25]  A. Belouchrani, K. Abed-Meraim, J.F. Cardoso and E. Moulines (February 1997). ”A blind source separation technique using second order statistics”, IEEE Trans. on Signal Processing, 45(2): 434-444 [26]  T. M. Cover and J. A. Thomas. Elements of Information Theory. John      Wiley & Sons, 1991. [27]  A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 3rd edition, 1991. [28]  A. Hyvärinen. New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in Neural Information Processing Systems, volume 10, pages 273-279. MIT Press, 1998. [29]  J. P. Nadal and N. Parga. Non-linear neurons in the low noise limit: a factorial code maximizes information transfer. Network, 5:565-581, 1994. [30]  J. F. Cardoso. Infomax and maximum likelihood for source separation. IEEE Letters on Signal Processing, 4:112-114, 1997. [31]  B. A. Pearlmutter an L. C. Parra. Maximum likelihood blind source separation: A context-sensitive generalization of ica. In Advances in Neural Information Processing Systems, volume 9, pages 613-619, 1997. [32]  M. S. Lewicki and T. J. Sejnowski. “Learning overcomplete representations.” Neural Computation 12, 337-365, 2000 [33]  P. Comon and O. Grellier, “Non-linear inversion of underdetermined    mixtures”, in First International Workshop on Independent Component Analysis and Signal Separation (ICA99), Aussois, France, 11-15, January 1999, pp. 461-465. [34]  L. De Lathauwer, P. Comon, B. De Moor, and J. Vandewalle. ICA algorithms for 3 sources and 2 sensors. IEEE Sig. Proc. Workshop on Higher-Order Statistics, June 14-16, 1999, Caesarea, Israel, Pages 116-120, 1999. [35]  F.J. Theis, E.W. Lang, Formalization of the Two-Step Approach to Overcomplete BSS, Proc. of SIP 2002, pp. 207-212 (2002). [36]  D. G. Luenberger. “Optimization by Vector Space Methods”, John Wiley & Sons, 1969. [37]  Martin-Clemente, R., Acha, J.I. “ New Equations and Iterative Algorithm for Blind Separation of Sources”, Signal Processing. Vol. 82. Num. 6. 2002. pp. 861-873 Applications on Image Processing [38]  Dan Yu, Farook Sattar, and Kai-Kuang Ma, “Watermark Detection and Extraction Using Independent Component Analysis Method”, 92-104, EURASIP Journal on Applied Signal Processing, 2002 [39]  J. G. Proakis, “Digital Communications”, McGraw-Hill, New York, 2nd edition, 1989. [40]  Qui-Hua Lin and Fu-Liang Yin, “Blind source separation applied to image cryptosystems with dual encryption”, Electronics Letters 12th September 2002 Vol.38 No.19 [41]  Chew Lim Tan, Ruini Cao, and Peiyi Shen “Restoration of Archival Documents Using a Wavelet Technique” [42]  H.-S. Don, “A Noise Attribute Thresholding Method for Document Image Binarization,” Proc. Third Int’l Conf. Document Analysis and Recognition, pp.231-234, Aug. 1995. [43]  G. Sharma, “Cancellation of Show-Through in Duplex Scanning,” Proc. Int’l Conf. Image Processing, vol.3 ,pp. 609-612, Sep. 2000. [44]  Mizuki HAGIWARA and Masayuki KAWAMATA, “Detection of Frame Displacement for Old Films Using Phase-Only Correlation”, International Symposium on Intelligent Signal Processing and Communication Systems, November 21-24, 2002. [45]  DENNING, D.E.R, “Cryptography and data security” (Addison-Wesley, Reading, MA, USA, 1982) [46]  PECORA, L.M., and CARROLL, Y.L., “Synchronization in chaotic systems”, Phys. Rev. Lett., 1990, 64, (8), pp. 821-823 [47]  B. Deknuydt, J. Smolders, Luc Van Etcken, and André Oosterlinck, “Color Space Choice for nearly reversible Image Compression”, 1300/SPIE Vol. 1818 Visual Communications and Image Processing ’92. Applications on Audio Processing [48]  Te-Won Lee, and Andreas Ziehe, “Combining time-delayed decorrelation and ICA: Towards solving the cocktail party problem”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing , May 1998, Seattle, Vol 2, pp. 1249-1252. [49]  http://inc2.ucsd.edu/~tewon/
 
   |