跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張國祥
研究生(外文):Guo Shiang Jang
論文名稱:由GMCSF高分泌能力的TC-1腫瘤細胞製成的疫苗對小鼠模組造成的T淋巴細胞與樹突細胞免疫反應研究
論文名稱(外文):Study the immune responses of both T lymphocytes and dendritic cells to a high-dose GM-CSF-secreting cell-based vaccine in murine TC-1 cancer model
指導教授:邱健泰邱健泰引用關係
指導教授(外文):J. T. Qiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:66
中文關鍵詞:疫苗顆粒單核球群落刺激生長因子T淋巴細胞樹突細胞
外文關鍵詞:vaccineGM-CSFT-cellsdendritic cellsIKDC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:798
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
子宮頸癌所造成的死亡人數是全球女性因癌症死亡人數排名的第二位,致癌途徑是經由幾種高危險型的人類乳突病毒 (human papillomaviruses, HPV)在人體內進行持續性感染所導致。近年來,儘管針對HPV第16,18型的預防性疫苗已經核可問世並獲得不錯的預防成效,醫學上仍需要治療型的疫苗來對抗那些曾遭高危險型HPV持續性感染的婦女。為了提升治療型的HPV疫苗產生的抗原呈獻能力,在先前的研究中,我們將老鼠的巨噬細胞聚落刺激因子 (GM-CSF)的密碼子 (DNA codon)作序列修飾(codon-optmized),使其mRNA的穩定性提高,藉此提升其蛋白之表達量,之後再以慢病毒載體 (lentivirus)將DNA送入具有HPV致癌基因E6/E7的老鼠腫瘤細胞TC-1中。GM-CSF是重要的造血成長因子,能活化包括T細胞與樹突細胞在內的免疫系統,在此可作為疫苗的佐劑。本篇我們將照過輻射的TC-1/cGM接種在老鼠皮下,並以流氏細胞儀 (flow cytometry)分析疫苗接種後,抗原專一性的T細胞與樹突細胞的免疫反應,再以微型正子照影 (microPET)非侵入性地觀察老鼠體內腫瘤的大小。發現若只打TC-1或TC-1/wtGM (wild-type GM-CSF)作為疫苗,只會增生較少的CD8+ T細胞與樹突細胞,但用TC-1/cGM接種後,可觀察到更強的免疫反應與抗腫瘤效果。
Cervical cancer is the second largest cause of cancer-related death in women Worldwide, which occurs following persistent infection with specific high-risk human papillomaviruses (HPV). Even though the prophylactic vaccines were approved and became available in the market in recent years. There also need therapeutic vaccines to combat high-risk HPV-associated cancers of those had been infected. In order to increase tumor antigen presentation of therapeutic vaccines, we previously modified wild-type GM-CSF gene (wtGM) into codon-optimized GM-CSF (cGM), and then used lentivirus as a vector to deliver GM-CSF gene into a HPV-16 E6/E7 transformed cell line, TC-1. It was verified that TC-1/cGM cells significantly increased steady-state mRNA levels of GM-CSF and further enhanced GM-CSF protein expression. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic growth factor and has profound effects on the functional activities of various leukocytes including T-cells and dendritic cells. In this study, the mice were inoculated with irradiated TC-1/cGM cell-based vaccine, and evaluated its effects on antigen-specific T-cell and dendritic cells (DCs) proliferation and activation by flow cytometric analysis. The antitumor immunity in vivo was monitored using a non-invasive animal position-emission tomography (microPET) imaging. It showed that mice vaccinated with TC-1 or TC-1/wtGM increased a lower level of CD8+ T-cells and DCs immune response. However, administration of TC-1/cGM vaccine revealed more potent immunity to elicit anti-tumor efficacy.
Table of Contents
CHAPTER I Introduction…………..…………………………………. 1
I.1 Cervical cancer and Human Papillomaviruses (HPV)………..… 1
I.2 Prophylactic vaccine of cervical cancer ……………………...… 2
I.3 Therapeutic vaccine of cervical cancer…………………………. 3
I.4 High-dose GM-CSF-secreting tumor cell-based vaccine………...5
CHAPTER II Materials and Methods………………………………….9
II.1 Cell line and mice…………………………………..…………...9
II.2 The differences of GM-CSF secretion among lived and
attenuated cells...……………………………...………….........10
II.3 Mice model of challenge and vaccine immunization………….10
II.4 Measurement of cytokine secretion by ELISA………………...11
II.5 Functional assay of GM-CSF protein……………….................12
II.6 Non-evasive imaging system: MicroPET……………...............13
II.7 Isolation of splenocytes and lymphoid cells………………...…14
II.8 Restimulation of splenocytes and lymphoid cells……………..14
II.9 Flow cytometry analysis………………...……………..………15
II.10 Statistical analysis………………...……………..……………16
CHAPTER III Results………………………………………………...17
III.1 Modification of GM-CSF DNA codon and transgenic tumor
cells.………………...……………..………………..………….17
III.2 GM-CSF expression of living TC-1 and CT-26 cell subsets…..17
III.3 GM-CSF expression of attenuated TC-1 and CT-26 cell
Subsets…………………………………………………………18
III.4 Identical function of GM-CSF secreted by transgenic tumor
cells compared to recombinant protein……………………...…18
III.5 In vivo high-dose GM-CSF secreting tumor vaccine improved
survival of tumor-bearing animals……………………………..19
III.6 High proliferation of cells in total draining lymph nodes of
animals treated with TC-1/wt or TC-1/cGM vaccination……...20
III.7 The efflux of dendritic and macrophage-like cells into
draining lymph nodes was in a GM-CSF dose-dependent
manner…………………………………………………………21
III.8 Entire CD4 T-cell expansion observed in the GM-CSF-
secreting tumor cell-based vaccination……………….………..22
III.9 Activated CD8 T-cell expansion observed in the
GM-CSF-secreting tumor cell-based vaccination……………..23
III.10 The relative cellular frequencies of NK and IKDC subsets
remained unaffected regardless of the presence of GM-CSF….24
III.11 E7-specific T-cell expansion generated by recall response
was restricted in CD8, but not in CD4 T-cells………………..25
III.12 In vitro antigen-specific IFN-γ and IL-4 production by
restmulated splenocytes and DLN cells…………………...…...26
CHAPTER IV Figures………………………………………………...28
IV.1 GM-CSF protein expression level of transgenic TC-1 cell
lysates………………………………………....……………….28
IV.2 Effects of GM-CSF production in gene-transduced tumor
cells of living………………………………....………………..29
IV.3 Effects of GM-CSF production in gene-transduced TC-1
cells after irradiation…………………………………………...30
IV.4 Qualification of GM-CSF produced by gene-transduced TC-1..31
IV.5 In vivo tumor protection following 3 times of vaccination
in C57BL/6 model……………………………………………..32
IV.6 In vivo tumor protection following 3 times of vaccination
in Balb/c model………………………………………………..33
IV.7 Non-invasive micro-positron-emission tomography imaging
(microPET) of in vivo tumor protection experiment……………34
IV.8 Cellularities of immune cells in draining lymph nodes………..35
IV.9 Kinetic induction of macrophage and DCs…………….………36
Kinetic induction of monocytes and DCs…………………… ..36
Kinetic induction of macrophage and DCs in total DLN……...37
Effects of GM-CSF on the cellularities of macrophage or DC
within DLN…………………………………………………….38
IV.10 Kinetic induction of entire CD4 T cells………………………39
IV.11 Kinetic induction of activated CD8 T cells…………………...40
IV.12 Effect of GM-CSF-secreting tumor cell-based vaccine on
NK cell populations…………………………………………..41
IV.13 Recall responses of HPV-specific T cells…………………….42
IV.14 In vitro antigen-specific IFN-γ and IL-4 production after
restimulation………………………………………………….43
CHAPTER V Discussion……………………………………………..44
REFERENCES………………………………………………………….48
Appendix………………...……………………………………………...56

Reference
1. Parkin, D.M., et al., Global cancer statistics, 2002. CA Cancer J Clin, 2005. 55(2): p. 74-108.
2. Doorbar, J., Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond), 2006. 110(5): p. 525-41.
3. Narisawa-Saito, M. and T. Kiyono, Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci, 2007. 98(10): p. 1505-11.
4. Lepique, A.P., T. Rabachini, and L.L. Villa, HPV vaccination: the beginning of the end of cervical cancer? - A Review. Mem Inst Oswaldo Cruz, 2009. 104(1): p. 1-10.
5. Bosch, F.X., et al., Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine, 2008. 26 Suppl 10: p. K1-16.
6. Schiffman, M. and S.K. Kjaer, Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr, 2003(31): p. 14-9.
7. Brown, T.J., A. Yen-Moore, and S.K. Tyring, An overview of sexually transmitted diseases. Part II. J Am Acad Dermatol, 1999. 41(5 Pt 1): p. 661-77; quiz 678-80.
8. Zhou, J., et al., Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology, 1991. 185(1): p. 251-7.
9. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med, 2007. 356(19): p. 1915-27.
10. Paavonen, J., et al., Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet, 2007. 369(9580): p. 2161-70.
11. Brown, D.R., et al., The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16-26 years. J Infect Dis, 2009. 199(7): p. 926-35.
12. Harper, D.M., et al., Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet, 2006. 367(9518): p. 1247-55.
13. Olsson, S.E., et al., Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine, 2007. 25(26): p. 4931-9.
14. Schlecht, N.F., et al., Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst, 2003. 95(17): p. 1336-43.
15. Phelps, W.C. and P.M. Howley, Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product. J Virol, 1987. 61(5): p. 1630-8.
16. Ritz, U., et al., Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int J Oncol, 2001. 19(6): p. 1211-20.
17. Steele, J.C., et al., T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia. Br J Cancer, 2005. 93(2): p. 248-59.
18. Burgess, A.W., J. Camakaris, and D. Metcalf, Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem, 1977. 252(6): p. 1998-2003.
19. Griffin, J.D., et al., The biology of GM-CSF: regulation of production and interaction with its receptor. Int J Cell Cloning, 1990. 8 Suppl 1: p. 35-44; discussion 44-5.
20. Schwager, I. and T.W. Jungi, Effect of human recombinant cytokines on the induction of macrophage procoagulant activity. Blood, 1994. 83(1): p. 152-60.
21. Miyajima, A., Molecular structure of the IL-3, GM-CSF and IL-5 receptors. Int J Cell Cloning, 1992. 10(3): p. 126-34.
22. Svanholm, C., B. Lowenadler, and H. Wigzell, Amplification of T-cell and antibody responses in DNA-based immunization with HIV-1 Nef by co-injection with a GM-CSF expression vector. Scand J Immunol, 1997. 46(3): p. 298-303.
23. Ji, Q., D. Gondek, and A.A. Hurwitz, Provision of granulocyte-macrophage colony-stimulating factor converts an autoimmune response to a self-antigen into an antitumor response. J Immunol, 2005. 175(3): p. 1456-63.
24. Wada, H., et al., T cell functions in granulocyte/macrophage colony-stimulating factor deficient mice. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12557-61.
25. Gridelli, C., et al., Vaccines for the treatment of non-small cell lung cancer: a renewed anticancer strategy. Oncologist, 2009. 14(9): p. 909-20.
26. Laheru, D., et al., Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res, 2008. 14(5): p. 1455-63.
27. Yin, W., et al., A novel therapeutic vaccine of GM-CSF/TNFalpha surface-modified RM-1 cells against the orthotopic prostatic cancer. Vaccine, 2010. 28(31): p. 4937-44.
28. Zhao, F., et al., Enhancing therapy of B16F10 melanoma efficacy through tumor vaccine expressing GPI-anchored IL-21 and secreting GM-CSF in mouse model. Vaccine, 2010. 28(16): p. 2846-52.
29. Zilberberg, J., et al., Treatment with GM-CSF secreting myeloid leukemia cell vaccine prior to autologous-BMT improves the survival of leukemia challenged mice. Biol Blood Marrow Transplant, 2010.
30. Clavreul, A., et al., Autologous tumor cell vaccination plus infusion of GM-CSF by a programmable pump in the treatment of recurrent malignant gliomas. J Clin Neurosci, 2010. 17(7): p. 842-8.
31. Zijlmans, H.J., et al., Role of tumor-derived proinflammatory cytokines GM-CSF, TNF-alpha, and IL-12 in the migration and differentiation of antigen-presenting cells in cervical carcinoma. Cancer, 2007. 109(3): p. 556-65.
32. Driessens, G., et al., Synergy between dendritic cells and GM-CSF-secreting tumor cells for the treatment of a murine renal cell carcinoma. J Immunother, 2009. 32(2): p. 140-4.
33. Shannon, M.F., J.R. Gamble, and M.A. Vadas, Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci U S A, 1988. 85(3): p. 674-8.
34. Bickel, M., R.B. Cohen, and D.H. Pluznik, Post-transcriptional regulation of granulocyte-macrophage colony-stimulating factor synthesis in murine T cells. J Immunol, 1990. 145(3): p. 840-5.
35. Thorens, B., J.J. Mermod, and P. Vassalli, Phagocytosis and inflammatory stimuli induce GM-CSF mRNA in macrophages through posttranscriptional regulation. Cell, 1987. 48(4): p. 671-9.
36. Gouy, M. and C. Gautier, Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res, 1982. 10(22): p. 7055-74.
37. Sharp, P.M., T.M. Tuohy, and K.R. Mosurski, Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res, 1986. 14(13): p. 5125-43.
38. Kudla, G., et al., High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol, 2006. 4(6): p. e180.
39. Qiu, J.T., et al., Novel codon-optimized GM-CSF gene as an adjuvant to enhance the immunity of a DNA vaccine against HIV-1 Gag. Vaccine, 2007. 25(2): p. 253-63.
40. Kielian, T., et al., Granulocyte/macrophage-colony-stimulating factor released by adenovirally transduced CT26 cells leads to the local expression of macrophage inflammatory protein 1alpha and accumulation of dendritic cells at vaccination sites in vivo. Cancer Immunol Immunother, 1999. 48(2-3): p. 123-31.
41. Hung, K., et al., The central role of CD4(+) T cells in the antitumor immune response. J Exp Med, 1998. 188(12): p. 2357-68.
42. Stampfli, M.R., et al., GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest, 1998. 102(9): p. 1704-14.
43. Mach, N., et al., Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res, 2000. 60(12): p. 3239-46.
44. Shortman, K. and J.A. Villadangos, Is it a DC, is it an NK? No, it's an IKDC. Nat Med, 2006. 12(2): p. 167-8.
45. Mach, N. and G. Dranoff, Cytokine-secreting tumor cell vaccines. Curr Opin Immunol, 2000. 12(5): p. 571-5.
46. Mosmann, T.R. and R.L. Coffman, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol, 1989. 7: p. 145-73.
47. Rodolfo, M., et al., IL-4-transduced tumor cell vaccine induces immunoregulatory type 2 CD8 T lymphocytes that cure lung metastases upon adoptive transfer. J Immunol, 1999. 163(4): p. 1923-8.
48. Dranoff, G., et al., Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3539-43.
49. Serafini, P., et al., High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res, 2004. 64(17): p. 6337-43.
50. Filipazzi, P., et al., Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol, 2007. 25(18): p. 2546-53.
51. Sonderegger, I., et al., GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med, 2008. 205(10): p. 2281-94.
52. Lang, R.A., et al., Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell, 1987. 51(4): p. 675-86.
53. Barouch, D.H., et al., Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol, 2002. 168(2): p. 562-8.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊