|
Reference 1. Parkin, D.M., et al., Global cancer statistics, 2002. CA Cancer J Clin, 2005. 55(2): p. 74-108. 2. Doorbar, J., Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond), 2006. 110(5): p. 525-41. 3. Narisawa-Saito, M. and T. Kiyono, Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci, 2007. 98(10): p. 1505-11. 4. Lepique, A.P., T. Rabachini, and L.L. Villa, HPV vaccination: the beginning of the end of cervical cancer? - A Review. Mem Inst Oswaldo Cruz, 2009. 104(1): p. 1-10. 5. Bosch, F.X., et al., Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine, 2008. 26 Suppl 10: p. K1-16. 6. Schiffman, M. and S.K. Kjaer, Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr, 2003(31): p. 14-9. 7. Brown, T.J., A. Yen-Moore, and S.K. Tyring, An overview of sexually transmitted diseases. Part II. J Am Acad Dermatol, 1999. 41(5 Pt 1): p. 661-77; quiz 678-80. 8. Zhou, J., et al., Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology, 1991. 185(1): p. 251-7. 9. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med, 2007. 356(19): p. 1915-27. 10. Paavonen, J., et al., Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet, 2007. 369(9580): p. 2161-70. 11. Brown, D.R., et al., The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16-26 years. J Infect Dis, 2009. 199(7): p. 926-35. 12. Harper, D.M., et al., Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet, 2006. 367(9518): p. 1247-55. 13. Olsson, S.E., et al., Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine, 2007. 25(26): p. 4931-9. 14. Schlecht, N.F., et al., Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst, 2003. 95(17): p. 1336-43. 15. Phelps, W.C. and P.M. Howley, Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product. J Virol, 1987. 61(5): p. 1630-8. 16. Ritz, U., et al., Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int J Oncol, 2001. 19(6): p. 1211-20. 17. Steele, J.C., et al., T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia. Br J Cancer, 2005. 93(2): p. 248-59. 18. Burgess, A.W., J. Camakaris, and D. Metcalf, Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem, 1977. 252(6): p. 1998-2003. 19. Griffin, J.D., et al., The biology of GM-CSF: regulation of production and interaction with its receptor. Int J Cell Cloning, 1990. 8 Suppl 1: p. 35-44; discussion 44-5. 20. Schwager, I. and T.W. Jungi, Effect of human recombinant cytokines on the induction of macrophage procoagulant activity. Blood, 1994. 83(1): p. 152-60. 21. Miyajima, A., Molecular structure of the IL-3, GM-CSF and IL-5 receptors. Int J Cell Cloning, 1992. 10(3): p. 126-34. 22. Svanholm, C., B. Lowenadler, and H. Wigzell, Amplification of T-cell and antibody responses in DNA-based immunization with HIV-1 Nef by co-injection with a GM-CSF expression vector. Scand J Immunol, 1997. 46(3): p. 298-303. 23. Ji, Q., D. Gondek, and A.A. Hurwitz, Provision of granulocyte-macrophage colony-stimulating factor converts an autoimmune response to a self-antigen into an antitumor response. J Immunol, 2005. 175(3): p. 1456-63. 24. Wada, H., et al., T cell functions in granulocyte/macrophage colony-stimulating factor deficient mice. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12557-61. 25. Gridelli, C., et al., Vaccines for the treatment of non-small cell lung cancer: a renewed anticancer strategy. Oncologist, 2009. 14(9): p. 909-20. 26. Laheru, D., et al., Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res, 2008. 14(5): p. 1455-63. 27. Yin, W., et al., A novel therapeutic vaccine of GM-CSF/TNFalpha surface-modified RM-1 cells against the orthotopic prostatic cancer. Vaccine, 2010. 28(31): p. 4937-44. 28. Zhao, F., et al., Enhancing therapy of B16F10 melanoma efficacy through tumor vaccine expressing GPI-anchored IL-21 and secreting GM-CSF in mouse model. Vaccine, 2010. 28(16): p. 2846-52. 29. Zilberberg, J., et al., Treatment with GM-CSF secreting myeloid leukemia cell vaccine prior to autologous-BMT improves the survival of leukemia challenged mice. Biol Blood Marrow Transplant, 2010. 30. Clavreul, A., et al., Autologous tumor cell vaccination plus infusion of GM-CSF by a programmable pump in the treatment of recurrent malignant gliomas. J Clin Neurosci, 2010. 17(7): p. 842-8. 31. Zijlmans, H.J., et al., Role of tumor-derived proinflammatory cytokines GM-CSF, TNF-alpha, and IL-12 in the migration and differentiation of antigen-presenting cells in cervical carcinoma. Cancer, 2007. 109(3): p. 556-65. 32. Driessens, G., et al., Synergy between dendritic cells and GM-CSF-secreting tumor cells for the treatment of a murine renal cell carcinoma. J Immunother, 2009. 32(2): p. 140-4. 33. Shannon, M.F., J.R. Gamble, and M.A. Vadas, Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci U S A, 1988. 85(3): p. 674-8. 34. Bickel, M., R.B. Cohen, and D.H. Pluznik, Post-transcriptional regulation of granulocyte-macrophage colony-stimulating factor synthesis in murine T cells. J Immunol, 1990. 145(3): p. 840-5. 35. Thorens, B., J.J. Mermod, and P. Vassalli, Phagocytosis and inflammatory stimuli induce GM-CSF mRNA in macrophages through posttranscriptional regulation. Cell, 1987. 48(4): p. 671-9. 36. Gouy, M. and C. Gautier, Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res, 1982. 10(22): p. 7055-74. 37. Sharp, P.M., T.M. Tuohy, and K.R. Mosurski, Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res, 1986. 14(13): p. 5125-43. 38. Kudla, G., et al., High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol, 2006. 4(6): p. e180. 39. Qiu, J.T., et al., Novel codon-optimized GM-CSF gene as an adjuvant to enhance the immunity of a DNA vaccine against HIV-1 Gag. Vaccine, 2007. 25(2): p. 253-63. 40. Kielian, T., et al., Granulocyte/macrophage-colony-stimulating factor released by adenovirally transduced CT26 cells leads to the local expression of macrophage inflammatory protein 1alpha and accumulation of dendritic cells at vaccination sites in vivo. Cancer Immunol Immunother, 1999. 48(2-3): p. 123-31. 41. Hung, K., et al., The central role of CD4(+) T cells in the antitumor immune response. J Exp Med, 1998. 188(12): p. 2357-68. 42. Stampfli, M.R., et al., GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest, 1998. 102(9): p. 1704-14. 43. Mach, N., et al., Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res, 2000. 60(12): p. 3239-46. 44. Shortman, K. and J.A. Villadangos, Is it a DC, is it an NK? No, it's an IKDC. Nat Med, 2006. 12(2): p. 167-8. 45. Mach, N. and G. Dranoff, Cytokine-secreting tumor cell vaccines. Curr Opin Immunol, 2000. 12(5): p. 571-5. 46. Mosmann, T.R. and R.L. Coffman, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol, 1989. 7: p. 145-73. 47. Rodolfo, M., et al., IL-4-transduced tumor cell vaccine induces immunoregulatory type 2 CD8 T lymphocytes that cure lung metastases upon adoptive transfer. J Immunol, 1999. 163(4): p. 1923-8. 48. Dranoff, G., et al., Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3539-43. 49. Serafini, P., et al., High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res, 2004. 64(17): p. 6337-43. 50. Filipazzi, P., et al., Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol, 2007. 25(18): p. 2546-53. 51. Sonderegger, I., et al., GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med, 2008. 205(10): p. 2281-94. 52. Lang, R.A., et al., Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell, 1987. 51(4): p. 675-86. 53. Barouch, D.H., et al., Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol, 2002. 168(2): p. 562-8.
|