[1] Clemson Advisory Board for Biomaterials, Definition of the word biomaterial, Thc 6th Annnal Intermalionel Biomaterial Symposium, April (1974).
[2] N. Huang, P. Yang, Y.X. Leng, J.Y. Chen, H. Sun, J. Wang, G.J. Wang, P.D. Ding and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials, Vol.24, Issue 13 (2003) 2177-2187.
[3] J.S. Sun, H.C. Liu, H.S Chang, J. Li, F.H. Lin and H.C. Tai, “The influence of hydroxyapatite particle size on bone cell activities: an in vitro study,” J. Biomed. Mater., Res, Vol.3, Issue 3 (1998) 390-397.
[4] S.D. Bruck, Properties of biomaterials in the physiological environment, CRC Press. Inc., Boca Raton, Florida (1980).
[5] J. Lausma, L. Mattsson, U. Rolander and B. Kasemo, “Chemical composition and morphology of titanium surface oxides,” Mater Res Soc Symp Proc., 55 (1986) 351.
[6] A.L. Yerokhin, X. Nie, A. Leyland and A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti6Al4V alloy,” Surf. Coat. Technol., 130 (2000) 195-206.
[7] Y.T. Sul, “The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant,” Biomaterials, 24 (2003) 3893-3907.
[8] H.S. Ryu, W. H. Song and S. H. Hong, “Biomimetic apatite induction on Ca-containing titania,” Current Applied Physics, 5 (2005) 512-515.
[9] Y. Han , S.H. Hong and K. Xu, “Structure and in vitro bioactivity of titania-based films by micro-arc oxidation,” Surface and Coatings Technology, 168 (2003) 249–258.
[10] 鄭智文,化學氣相沉積二氧化鈦薄膜及添加雜質效應,國立成功大學材料科學(工程)研究所,1991,碩士論文。[11] X. Bokhimia, A. Moralesa, M. Aguilara, J.A. Toledo-Antoniob and F. Pedrazab, “Local order in titania polymorphs,” International Journal of Hydrogen Energy, 26 (2001) 1279–1287.
[12] M.J. Herrmann, C. Guillard and P. Pichat, Catalyst Today, 17, 7 (1993).
[13] N. Huang, P. Yang and X. Cheng, “Blood compatibility of amorphous titanium oxide films synthesized by ion beamenhanced deposition,” Biomaterials, 19 (1998) 771.
[14] K. Hayasho, T. Mashima and K. Uenoyama, “The effect of hydroxyapatite coating on bony ingrowth into grooved titanium implants,” Biomaterials, 20 (1999) 111.
[15] K. de Groot, Bioceramics of calcium phosphate, CRC Press. Inc., Boca Raton, Florida, (1983)79-97.
[16] P. Bristowe, ”Studies in Materials Science Reader in Materials Science,” Clare College, Cambridge.
[17] 李易聲,利用不同CeO2 觸媒降解苯胺之濕式過氧化反應之研究,嘉南藥理科技大學環境工程與科學系,2010,碩士論文。[18] G.P. Wirtz, S.D. Brown and W. M. Kriven, “Ceramic coatings by anodic spark deposition,” Mater. Manuf. Processes, 6 (1991) 87-115.
[19] M. Fini, A. Cigada, G. Rondelli, R. Chiesa and R. Giardino, “In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium,” Biomaterials, 20 (1999) 1587-1594.
[20] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey, “Plasma electrolysis for surface engineering,” Surf. Coat. Technol., 122 (1999) 73-93.
[21] P. Gupta, G. Tenhundfeld, E.O. Daigle and D. Ryabkov, “Electrolytic plasma technology: Science and engineering-An overview,” Surf. Coat. Technol., 201 (2007) 8746-8760.
[22] L.Wan, J.F. Li and J.Y. Feng, “Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation,” Materials Science and Engineering, 139, (2007), 216-220.
[23] Y. Han, S.H. Hong and K. Xu, “Synthesis of nanocrystalline titania films by micro-arc oxidation,” Materials Letters, 56 (2002) 744–747.
[24] T.H. Teh, A. Berkani , S. Mato and P. Skeldon, “Initial stages of plasma electrolytic oxidation of titanium” Corrosion Science, 45 (2003) 2757–2768.
[25] D. Wei, Y. Zhou, D. Jia and Y. Wang, “Effect of applied voltage on the structure of microarc oxidized TiO2-based bioceramic films,” Materials Chemistry and Physics., 104 (2007) 177–182.
[26] F. Jin, P..K. Chu, K. Wang and J. Zhao, “Thermal stability of titania films prepared on titanium by micro-arc oxidation,” Materials Science and Engineering, 476 (2008) 78–82.
[27] T. Kokubo, H. M. Kim and M. Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, 24 (2003) 2161.
[28] Y. Han, J. Sun and X. Huang, “Formation mechanism of HA-based coatings by micro-arc oxidation,” Electrochemistry Communications, 10 (2008) 510–513.
[29] M. Fini, A. Cigada, G. Rondelli, R. Chiesa and R. Giardino, “In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium,” Biomaterials, 20 (1999) 1587-1594.
[30] X. Nie , A. Leyl and A. Matthews, “Deposition of layered bioceramic hydroxyapatite/ TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis,” Surface and Coatings Technology, 125 (2000) 407–414.
[31] Y. Han, S.H. Hong and K. Xu, “Structure and in vitro bioactivity of titania-based films by micro-arc oxidation,” Surface and Coatings Technology, 168 (2003) 249-258.
[32] W.H. Songa, Y.K. Juna,Y. Hana and S.H. Hong, “Biomimetic apatite coatings on micro-arc oxidized titania,” Biomaterials, 25 (2004) 3341-3349.
[33] D. Wei, Y. Zhou, D. Jia and Y. Wang, “Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications,” Applied Surface Science, 254 (2008) 1775–1782.
[34] X.J. Tao, S.J. Li, C.Y. Zheng, J. Fu, Z. Guo, Y.L. Hao, R. Yang and Z.X. Guo, “Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation,” Materials Science and Engineering C, 29 (2009) 1923-1934.
[35] S. Limin, C.B. Christopher, A.G. Karlis and K. Ahmet, “Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review,” J. Biomed Mater Res., Vol. 58 ( 2001) 570-592.
[36] 吳佳昌、曾婉榕、張浩陞、曾麗玲、謝耀東, “人工植體覆蓋式義齒之存活率:高雄榮總14年回溯性研究,” 牙醫學雜誌(J Dent Sci)., Vol.2 Issue.29 (2009) 1-6.
[37] R.D. Bloebaum, D. Beeks and L.D. Dorr, “Complications with hydroxyapatite particulate
separation in total hiparthroplasty,” Clin Orthop., 298 (1994) 19-26.
[38] M.S. Kim, J.J. Ryu and Y.M. Sung, “One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation,” Electrochemistry Communications, 9 (2007) 1886–1891.
[39] 李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,民國八十九年。
[40] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, 27 (2006) 2907.
[41] R.A. Spurr and H. Myers. “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer” Anal. Chem., 29 (1957) 760-762.
[42] B. D. Cullity and S. R. Stock. Elements of X-ray Diffraction, Third Edition. Prentice, New York, (2001).
[43] M. Jevitc, M. Mitric, S Skapin, B. Jancar, N. Ignjatovic and D. Uskokovic, “Crystal Structure of Hydroxyapatite Nanords Synthesized by Sonochemical Homogeneous Precipitation,”Crystal Growth and Design, 8(2003) 2217-2222.
[44] P. Thomeen, C. Larsson, L.E. Ericson, L. Sennerby, J. Lausmaa and B. Kasemo,“Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium,”Journal of Materials Science: Materials in Medicine, 8(1997) 653.
[45] K. Kieswetter, Z. Schwartz, D.D. Dean and B.D. Boyan, “The Role of Implant Surface Characteristics in the Healing of Bone,” Critical Reviews in Oral Biology & Medicine, 7 (1996) 329-345.
[46] A. Wennerberg, T. Albrektsson and B. Andersson, “An animal study of c.p. titanium screws with different surface topographies,” Journal of Materials Science: Materials in Medicine, 6 (1995) 302-309.
[47] 黃何雄、何俊德、游惠婷, “Effect of Surface Roughness of Ti and Ti-6A1-4V Alloy on the Initial Adhesion and Proliferation of osteoblast-like U-2 OS Cells,” 中華牙醫學雜誌, vol.23, Issue 3 (2004).
[48] B. Chehroudi, T.R.L. Gould and D.M. Brunette. “Effects of grooved titanium coated implant surface on epithelial cell behavior in vitro and in vivo,” J. Biomed Mater Res., 23 (1989) 1067-1085.
[49] M.Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi and T. Nakamura, “Structural dependence of apatite formation on titania gels in a simulated body fluid,” J. Biomed Mater Res., Vol. 64A (2003) 164– 170.
[50] R. Rohanizadeh, M. Al-Sadeq and R.Z. LeGeros, “Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition,” J. Biomed Mater Res., Vol. 71 (2004) 343–352.
[51] D. Elwell and H.J. Schell, “Crystal Growth from High-Temperature Solutiona,” Academic Press, Inc., 150 (1975)
[52] 崔廣宇,藉由仿生浸泡法在體外鍍製氫氧基磷灰石趨勢之探討,國立成功大學製造工程研究所,碩士論文[53] H. S. Ryu, W.H. Song and S.H. Hong R, “Biomimetic apatite induction of P-containing titania formed by micro-arc oxidation before and after hydrothermal treatment,” Surface & Coatings Technology, 202 (2008) 1853-1858.