跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳子青
研究生(外文):Tzu-Ching Wu
論文名稱:結合河川流態與環境梯度概念於水資源最佳化管理之研究
論文名稱(外文):Integrating Ecological Flow Regimes and Environment Gradient Concept in Optimum Water Resources Management
指導教授:張斐章張斐章引用關係
指導教授(外文):Fi-John Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:162
中文關鍵詞:生態河川流態台灣生態水文指標系統梯度分析方法水庫操作多目標水庫最佳化模式非支配排序遺傳演算II
外文關鍵詞:Ecological flow regimesTaiwan Ecohydrology Indicator SystemThe gradient analysisReservoir operationMulti-objective Water Resources ManagementNSGA-II
相關次數:
  • 被引用被引用:3
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來針對保護河川生態的河川環境流量研究,已從以往考慮保留單一最小流量的方式,發展成為以維護「生態河川流態」為基礎的河川流量管理方式;但發展生態河川流態的難題在於如何能真正考量河川流態與河川生態系統間的關係與影響,而非僅是採用歷史流量改變度評估的替代方案。本研究提出一考量生態河川流態與魚類群聚關係的架構,以數量生態學上的梯度分析方法建立魚類豐度與台灣生態水文指標(TEIS)間的生態反應模型,引進代表合成環境梯度的虛擬變數以定義各魚種在生態水文環境梯度軸上的生態區位;這方法的優點在於(1)以河川魚類群聚為考量對象而非少數選定魚種,(2)為一基於高斯反應模型的生態模型,(3)能有效的分離眾多環境因子對生物影響的複雜合成效應。在本研究中並延伸此概念於建立基於河川流態的河川流量管理方式,以石門水庫為例建立考量人類需求與生態需求的多目標最佳化操作模式,並利用非支配排序遺傳演算II (NSGA-II)搜尋最佳蓄水歷線。研究結果顯示結合梯度分析方法與NSGA-II能幫助建立更具生態意義的河川流量管理方式,找出同時滿足人類用水需求與維持生態系統健全之水庫操作規則,以供多目標水資源管理進行決策。
Investigation on environmental flow for conservation of river ecosystem has been focused on ecological flow regime approach which is more comprehensive than the traditional minimum flow management schemes that merely consider single flow value. The pivotal difficulty in developing ecological flow regime is how to take into account the interaction and relation between flow regime and river ecosystem. In this study we propose an idea of considering the relation between ecological flow regime and fish communities and then applying the gradient analysis technique in quantitative ecology theory to constructing the ecological response model. The model is built based on the fish abundance and the Taiwan Ecohydrology Indicator System (TEIS). The dummy variables for representing synthetic environment gradient could be used to identify the niche in each fish species on ecohydrological gradient axis. The main advantages of this technique are: (1)approximate the natural flow regimes that maintained the entire panoply of species, (2)based on unimodal Gaussian response model, and (3)separate the effects of explanatory environment variables.
This technique is then extended herein to build the optimal operation model in Shihmen Reservoir by considering the maintenance of natural flow regimes and human needs, and the non-dominated sorting genetic algorithm II (NSGA-II) is used to optimize the multi-objective model. The results demonstrated that more meaningful manner of flow management in ecological aspect can be effectively constructed by integrating the gradient analysis technique and NSGA-II for the ecological flow regimes. Meanwhile, the method searches the optimal operation rule that can simultaneously the water demand for maintenance of ecosystem and human need provides the decision for multi-objective water resources management.
摘 要 i
Abstract ii
目 錄 iv
表目錄 ix
圖目錄 xi
第一章 緒 論 1
1.1 研究動機與目的 1
1.2 研究方法與流程 2
1.3 論文架構 4
第二章 文獻回顧 6
2.1 生態河川流態 6
2.2 梯度分析方法 8
2.3 模糊規劃理論 10
2.4 優選模式於水庫運轉操作 11
2.5 多目標進化式演算法 13
第三章 理論概述 15
3.1 台灣生態水文指標系統 15
3.1.1 自然河川流態與生態河川流態 15
3.1.2 水文變化指標 17
3.1.3 台灣生態水文指標系統之考量因子 18
3.1.4 台灣生態水文指標系統之介紹 21
3.2 梯度分析方法 23
3.2.1 環境梯度與生態區位 23
3.2.2 梯度分析方法之目的 27
3.2.3 梯度分析方法的分類與流程 30
3.2.4 梯度分析方法之雙序圖意義 33
3.2.5 除趨勢對應分析(DCA) 36
3.2.6 浄蒙地卡羅排列測試 37
3.2.7 典型對應分析(CCA) 38
3.3 模糊規劃 40
3.3.1 模糊集合理論 40
3.3.2 模糊規劃模式 41
3.4 遺傳演算法 45
3.4.1 遺傳演算法簡述 45
3.4.2 演算流程與基本單元 47
3.4.3 遺傳演算法三大運算元 49
3.5 非支配排序遺傳演算法II (NSGA-II) 52
3.5.1 多目標最佳化模式 52
3.5.2 NSGA-II概述及演算流程 57
3.5.3 非支配排序及擁擠距離 59
3.5.4 NSGA-II運算元 61
第四章 研究案例 63
4.1 研究區域概況 63
4.1.1 大漢溪流域簡介 63
4.1.2 大漢溪流域魚類簡介 64
4.1.3 石門水庫簡介 67
4.2 梯度分析方法結果 69
4.2.1 資料選取原則及限制 69
4.2.2 降趨對應分析DCA結果 73
4.2.3 DCA梯度值與水文因子逐步迴歸結果 82
4.2.4 浄蒙地卡羅排列測試結果 88
4.2.5 典型對應分析CCA結果 92
4.3 石門水庫操作 101
4.3.1 石門水庫引水系統概述 101
4.3.2 石門水庫操作規線 101
4.4 多目標最佳化模式之建立 103
4.4.1 人類需求目標及限制式 103
4.4.2 人類需求目標函數及限制式的模糊化 106
4.4.3 生態系統需求目標 108
4.4.4 多目標水庫最佳化模式 109
4.4.5 聯程原理與缺水指標 112
第五章 結果與討論 115
5.1 石門水庫單目標最佳操作 115
5.2 石門水庫多目標最佳化結果 120
5.3 結果與討論 125
第六章 結論與建議 132
6.1 結論 132
6.2 建議 134
參考文獻 135
附錄一 台灣生態水文指標系統說明 148
附錄二 大漢溪常見淡水魚類照片與棲所生態描述 151
附錄三 民國77年石門水庫操作規線最佳化結果 155
Arthington, A.H. and Pusey, B.J., 1994. Essential flow requirements of river fish communities. AWWA Environmental Flows Seminar. Australia.
Austin, M.P. and Austin, B.O., 1980. Behaviour of experimental plant communities along a nutrient gradient. Journal of Ecology, 68(3): 891-918.
Austin, M.P., 1985. Continuum Concept, Ordination Methods, and Niche Theory. Annual Reviews in Ecology and Systematics, 16(1): 39-61.
Back, T., Hoffmeister, F. and Schwefel, H.P., 1991. A survey of evolution strategies. Proceedings of the Fourth International Conference on Genetic Algorithms: 2-9.
Back, T., 1996. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, USA.
Bellman, R.E. and Zadeh, L.A., 1970. Decision-making in a fuzzy environment. Management Science, 17(4): 141-164.
Bernardo, J.M. and Alves, M.H., 1999. New perspectives for ecological flow determination in semi-arid regions: A preliminary approach. Regulated Rivers: Research & Management, 15(1): 221-229.
Blin, J.M., 1977. Fuzzy sets in multiple criteria decision-making''. Martin Starr and Milan.
Braak, C.J.F. and Verdonschot, P.F.M., 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences-Research Across Boundaries, 57(3): 255-289.
Bunn, S.E. and Arthington, A.H., 2002. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management, 30(4): 492-507.
Chang, F.J. and Chen, L., 1998. Real-Coded Genetic Algorithm for Rule-Based Flood Control Reservoir Management. Water Resources Management, 12(3): 185-198.
Chang, F.J., Hui, S.C. and Chen, Y.C., 2002. Reservoir operation using grey fuzzy stochastic dynamic programming. Hydrological Processes, 16(12): 2395-2408.
Chang, F.J., Lai, J.S. and Kao, L.S., 2003. Optimization of operation rule curves and flushing schedule in a reservoir. Hydrological Processes, 17(8): 1623-1640.
Chang, F.J., Chen, L. and Chang, L.C., 2005a. Optimizing the reservoir operating rule curves by genetic algorithms. Hydrological Processes, 19(11): 2277-2289.
Chang, Y.T., Chang, L.C. and Chang, F.J., 2005b. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes, 19(7): 1431-1444.
Chang, F.J. and Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1): 1-10.
Chang, F.J., Tsai, M.J., Tsai, W.P. and Herricks, E.E., 2008. Assessing the ecological hydrology of natural flow conditions in Taiwan. Journal of Hydrology, 354: 75-89.
Coello, C.A.C., 1999. A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems, 1(3): 129-156.
Connell, J.H., 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science, 199(4335): 1302-1310.
Crawley, P.D. and Dandy, G.C., 1993. Optimal operation of multiple-reservoir system. Journal of Water Resources Planning and Management, 119(1): 1-17.
Cushman, R.M., 1985. Review of Ecological Effects of Rapidly Varying Flows Downstream from Hydroelectric Facilities. North American Journal of Fisheries Management, 5(3a): 330-339.
Dagli, C.H. and Miles, J.F., 1980. Determining Operating Policies for a Water Resource System. Journal of Hydrology, 47(3/4).
Darwin, C., 1945. On the Origin of Species by Means of Natural Selection, l. ed. Watts and Co., Londres.
Deb, K. and Agrawal, R.B., 1995. Simulated binary crossover for continuous search space. Complex Systems, 9(2): 115-148.
Deb, K., 2000. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4): 311-338.
Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.
Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2): 182-197.
Fahmy, H.S., King, J.P., Wentzel, M.W. and Seton, J.A., 1994. Economic optimization of river management using genetic algorithms. Proceedings of the Alternative Energy Conference, ASAE 1994 International Summer Meeting, Kansas City, Mo: 19–22.
Fonseca, C.M. and Fleming, P.J., 1995. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation, 3(1): 1-16.
Galat, D.L. and Lipkin, R., 2000. Restoring ecological integrity of great rivers: historical hydrographs aid in defining reference conditions for the Missouri River. Hydrobiologia, 422: 29-48.
Gauch, H.G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press.
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
Hajela, P. and Lin, C.Y., 1992. Genetic search strategies in multicriterion optimal design. Structural and Multidisciplinary Optimization, 4(2): 99-107.
Harvey, B.C., 1987. Susceptibility of Young-of-the-Year Fishes to Downstream Displacement by Flooding. Transactions of the American Fisheries Society, 116(6): 851-855.
Hill, M.O. and Gauch, H.G., 1980. Detrended correspondence analysis: An improved ordination technique. Plant Ecology, 42(1): 47-58.
Hill, M.G. and Newbery, D.M.C., 1982. An Analysis of the Origins and Affinities of the Coccid Fauna (Coccoidea; Homoptera) of Western Indian Ocean Islands, with Special Reference to Aldabra Atoll. Journal of Biogeography, 9(3): 223-229.
Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. Ann Arbor MI: University of Michigan Press.
Horn, H.S., 1975. Markovian properties of forest succession. Ecology and Evolution of Communities: 196–211.
Horn, J., Nafpliotis, N. and Goldberg, D.E., 1994. A niched Pareto genetic algorithm for multiobjective optimization. Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on: 82-87.
Hsu, S.K., 1995. Shortage indices for water-resources planning in Taiwan. Journal of Water Resources Planning and Management, 121(2): 119-131.
Hughes, D.A. and Smakhtin, V., 1996. Daily flow time series patching or extension: a spatial interpolation approach based on flow duration curves. Hydrological sciences journal, 41(6): 851-871.
Hughes, D., O''Keeffe, J., Smakhtin, V. and King, J., 1997. Development of an operating rule model to simulate time series of reservoir releases for instream flow requirements. Water S. A., 23(1): 21-30.
Hutchinson, G.E., 1953. The concept of pattern in ecology. Proceedings of the Academy of Natural Sciences of Philadelphia, 105: 1-12.
Joines, J.A., Gupta, D., Gokce, M.A., King, R.E. and Kay, M.G., 2002. Supply chain multi-objective simulation optimization. Simulation Conference, 2002. Proceedings of the Winter, 2.
Koel, T.M. and Sparks, R.E., 2002. Historical patterns of river stage and fish communities as criteria for operations of dams on the Illinois River. River Research and Applications, 18(1): 3-19.
Koel, T.M. and Peterka, J.J., 2003. Stream Fish Communities and Environmental Correlates in the Red River of the North, Minnesota and North Dakota. Environmental Biology of Fishes, 67(2): 137-155.
Kuiper, E., 1965. Water Resources Development, Planning, Engineering and Economics. Washington, DC, Buterworth Inc, 1965. 483 p.
Kursawe, F., 1990. Evolutionsstrategien fur die Vektoroptimierung. Diplome thesis, University of Dortmund, Department of Computer Science.
Lep, J. and milauer, P., 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press.
Liu, J.S., 2001. Monte Carlo Strategies in Scientific Computing. Springer.
Loucks, D.P. and Dorfman, P.J., 1975. An Evaluation of some Linear Decision Rules in Chance-Constrained Models for Reservoir Planning and Operation. Water Resources Research 11(6): 777-782.
Magoulick, D.D. and Kobza, R.M., 2003. The role of refugia for fishes during drought: a review and synthesis. Freshwater Biology, 48(7): 1186-1198.
Michalewicz, Z., 1996. Genetic Algorithms+ Data Structures= Evolution Programs. Springer.
Michalewicz, Z. and Schoenauer, M., 1996. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 4(1): 1-32.
Negoita, C.V. and Sularia, M., 1976. On fuzzy mathematical programming and tolerances in planning. Economic Computer and Economic Cybernetic Studies and Researches, 1: 3-15.
Odum, E.P., 1963. Ecology; ed. it. Ecologia.
Olden, J.D. and Poff, N.L., 2003. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19(2): 101-121.
Osyczka, A. and Kundu, S., 1996. A modified distance method for multicriteria optimization, using genetic algorithms. Computers & Industrial Engineering, 30(4): 871-882.
Pegg, M.A. and McClelland, M.A., 2004. Spatial and temporal patterns in fish communities along the Illinois River. Ecology Of Freshwater Fish, 13(2): 125-135.
Poff, N.L. et al., 1997. The natural flow regime. BioScience, 47(11): 769-784.
Poff, N.L. and Ward, J.V., 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46(10): 1805-1818.
Putman, R., 1984. Community Ecology. Chapman & Hall.
Pyron, M., Lauer, T.E. and Gammon, J.R., 2006. Stability of the Wabash River fish assemblages from 1974 to 1998. Freshwater Biology, 51(10): 1789-1797.
Revelle, C., Joeres, E. and Kirby, W., 1969. The Linear Decision Rule in Reservoir Management and Design. I. Development of the Stochastic Model. Water Resources Research, 5(4): 767-777.
Richter, B.D., Baumgartner, J.V., Powell, J. and Braun, D.P., 1996. A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4): 1163-1174.
Richter, B., Baumgartner, J., Wigington, R. and Braun, D., 1997. How much water does a river need? Freshwater Biology, 37(1): 231-249.
Sastry, V.N., Tiwari, R.N. and Sastri, K.S., 1993. Dynamic programming approach to multiple objective control problem having deterministic or fuzzy goals. Fuzzy Sets and Systems, 57(2): 195-202.
Schaffer, J.D., 1985. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Proceedings of the 1st International Conference on Genetic Algorithms table of contents: 93-100.
Shelford, V.E., 1913. Animal Communities in Temperate America. The Geographic Society of Chicago. Bull.
Shiau, J.T. and Wu, F.C., 2007. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime. Water Resources Research, 43(6).
Slowinski, R., 1986. A multicriteria fuzzy linear programming method for water supply system development planning. Fuzzy Sets and Systems, 19(3): 217-237.
Sobolzv, L.X. and Utekhin, V.D., 1973. Russian ramensky systematization. Ordination and Classification of Communities.
Sparks, R.E., 1992. Risks of altering the hydrologic regime of large rivers. Predicting ecosystem risk, 20: 119–152.
Srinivas, N. and Deb, K., 1994. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3): 221-248.
Suen, J.P., Herricks, E.E. and Eheart, J.W., 2004. Ecohydrologic Indicators for Rivers of Northern Taiwan. Critical Transitions In Water And Environmental Resources Management: 1-9.
Suen, J.P., 2005. Ecologically based methods for multi-objective water resources management in taiwan. Ph.D. dissertation, University of Illinois, Urbana.
Suen, J.P. and Eheart, J.W., 2006. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resources Research, 42(3): W03417.
Tanaka, H., Okuda, T. and Asai, K., 1973. On Fuzzy-Mathematical Programming. Cybernetics and Systems, 3(4): 37-46.
Ter Braak, C.J.F., 1986. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology, 67(5): 1167-1179.
Ter Braak, C.J.F., 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Plant Ecology, 69(1): 69-77.
Ter Braak, C.J.F., 1994. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience. Sainte-Foy, 1(2): 127-140.
Ter Braak, C.J.F., 1995a. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometrics and Intelligent Laboratory Systems, 28(1): 165-180.
Ter Braak, C.J.F., 1995b. Ordination. Data analysis in community and landscape ecology: 91-173.
Ter Braak, C.J.F. and Van Tongeren, O.F.R., 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press.
Ward, J.V. and Stanford, J.A., 1983. The intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems. Pages. 347–356. Dynamics of lotic ecosystems. Ann Arbor Science Publishers, Ann Arbor, Michigan.
Ward, J.V., Tockner, K. and Schiemer, F., 1999. Biodiversity of Floodplain River Ecosystems: Ecotones and Connectivity.
Welcomme, R.L., 1985. River fisheries. FAO Fisheries Technical Paper, 262(330): 1990-2001.
Yevjevich, V.M., 1967. On Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. Colo state univ hydrol pap, 23.
Zadeh, L.A., 1965. Information and Control. Fuzzy Sets, 8(3): 338–353.
Zhang, W.B., 1991. Endogenous Fluctuations of Actual Prices near Natural ones in a Classical Growth Model. Metroeconomica, 42(2): 113-123.
Zimmermann, H.J., 1976. Description and optimization of fuzzy system. 23. International Journal of general System, 2: 209-216.
Zimmermann, H.J., 1978. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1): 45-55.
Zitzler, E. and Thiele, L., 1998. Multiobjective optimization using evolutionary algorithms—A comparative case study. Parallel Problem Solving from Nature, V: 292–301.
王漢泉, 1983. 淡水河流域魚類分佈與水質關係之初步研究. 中國水產, 372: 25-34.
王漢泉, 1999. 淡水河系魚類生物監測分析. 環境檢驗所環境調查研究年報, 7: 181-212.
王漢泉, 2004. 河川採樣二十年甘苦談. 環境檢驗通訊雜誌, 50: 25-26.
吳富春、李國昇, 1998. 集集共同攔河堰之環境生態基準流量評估. 水資源管理研討會論文集.
吳瑞賢, 溫博文 and 陳世偉, 2004. 桃園大圳及石門大圳灌溉系統之效能評估. 桃園大圳水資源暨營運管理學術研討會: 8-23.
邱昱禎, 張雅婷 and 張斐章, 2005. 模糊系統規劃理論於水資源經營之研究. 台灣水利, 53(1): 11-22.
張斐章, 2004. 生態水文於多目標水資源管理之研究與應用(1/2). 經濟部水利署水利規劃試驗所期末報告, ISBN-957-01-9429-4.
張斐章, 2005. 生態水文於多目標水資源管理之研究與應用(2/2). 經濟部水利署水利規劃試驗所期末報告, ISBN-986-00-3534-2.
張斐章, 2006. 水資源最佳化管理於河川生態復育之研究(1/3). 經濟部水利署水利規劃試驗所期末報告 ISBN-978-986-00-7663-9.
張斐章, 2007. 水資源最佳化管理於河川生態復育之研究(2/3). 經濟部水利署水利規劃試驗所期末報告, ISBN-978-986-00-7663-9.
張斐章, 黃金鐸 and 王文清, 1995. 運用模糊序率動態規劃於水庫操作之研究. 台灣水利, 44(4): 37-49.
張斐章, 黃源義 and 梁晉銘, 1993. 模糊推論模式之建立及應用於水文系統之研究. 中國農業工程學報, 39(1): 71-83.
張斐章、王文清, 1995. 模糊線性規劃於水資源規劃之應用. 台灣水利, 43(1): 31-41.
張斐章、徐國麟, 1990. 利用模糊集理理論推估河川流量研究. 中國農業工程學報, 30(4): 1-12.
張斐章、張麗秋, 1999. 智慧型水庫即時操作控制系統. 農業工程學報, 45(4): 18-30.
張斐章、梁晉銘, 1999. 類神經模糊推論模式在水文系統之研究. 台灣水利, 47(2): 1-12.
張斐章、惠士奇, 1998. 灰色模糊序率動態規劃於水庫操作之應用. 中國農業工程學報, 44(1): 34-49.
陳莉、張斐章, 1995. 遺傳演算法優選水庫運用規線之研究. 農業工程學報, 41(4): 20-30.
彭瑞國, 吳瑞賢, 畢嵐杰 and 溫博文, 2005. 保育用水觀念初探. 水資源管理研討會論文集.
經濟部水利署第十河川局, 2003. 大漢溪上游段環境改善規劃. 經濟部水利署水利規劃試驗所期末報告.
蕭政宗, 1999. 單一水庫系統缺水特性之探討. 台灣水利, 47(2): 72-91.
高力山 1998,「水庫操作規線對供水及排砂影響之研究」,國立台灣大學農業工程學系碩士論文。
黃文政、袁倫欽、李啟鳴 2001,「遺傳演算法在多水庫最佳化操作之研究」,第12屆水利工程研討會論文集,pp. B1-B5。
江柏寬 2002,「以進化演算法應用於德基水庫即時操作之研究」,私立中華大學土木工程學系碩士論文。
邱昱禎 2003,「模糊規劃理論與優選法於水庫操作之研究」,國立台灣大學生物環境系統工程學系碩士論文。
戴欣怡2006,「考量生態流量之水庫最佳操作策略」,國立台灣大學生物環境系統工程學系碩士論文。
童慶斌 2005,第九章 遺傳演算法,國立台灣大學農業工程學系啟發式演算法與水資源管理課程教材。
經濟部水資源統一規劃委員會,1983,淡水河流域底棲生物與魚類調查及水質評估,經濟部水資源統一規劃委員會,pp. 38。
經濟部水資源統一規劃委員會,1984a,淡水河流域水生物調查及水質評估之研究,經濟部水資源統一規劃委員會,pp. 47。
經濟部水資源統一規劃委員會,1984b,淡水河流域魚類分佈與水質關係之研究,經濟部水資源統一規劃委員會,pp. 39。
經濟部水資源統一規劃委員會,1986,淡水河水系魚類分佈與生態環境關係之研究,經濟部水資源統一規劃委員會,pp. 48。
經濟部水利署第十河川局, 2003. 大漢溪上游段環境改善規劃. 經濟部水利署水利規劃試驗所期末報告.
經濟部水利署第十河川局,2005,淡水河系河川情勢調查計畫,經濟部水利署
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top