跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2025/10/02 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊博智
研究生(外文):Po-Chih Yang
論文名稱:側鏈對予體−受體交替導電共聚物的光電性質與自組裝行為之影響
論文名稱(外文):Side Chain Effects on the Optoelectronic Properties and Self Assembly Behaviors of Donor-Acceptor Alternating Conducting Copolymers
指導教授:林唯芳林唯芳引用關係
指導教授(外文):Wei-Fang Su
口試委員:劉貴生童世煌
口試委員(外文):Guey-Sheng LiouShih-Huang Tung
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:予體−受體交替導電共聚物六角柱結構自組裝寡醚基雙親性
外文關鍵詞:donor-acceptor alternating conducting copolymerhexagonal cylinder structureself assemblyoligoetheramphiphilic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
予體−受體交替導電共聚物有應用於低成本的場效電晶體、太陽能電池等軟性電子元件之潛力,但這類聚合物常具剛性而難以加工。我們透過側鏈工程的方法,不僅能改變共聚物的構型,也能調控其自組裝行為及光學能隙。
我們利用Stille coupling反應並變換側鏈的位向、類型及長度,合成出四個系列以terthiophene (3T)當作予體及thieno[3,4-c]pyrrole-4,6-dione (TPD)當作受體之予體−受體交替導電共聚物。四個系列的共聚物命名為P3T(RiN)TPD(R)、P3T(RiN)TPD(E)、P3T(RoN)TPD(R)及P3T(RoN)TPD(E),其中R是烷基側鏈、E是寡醚基側鏈、i代表兩條R接在3T的3,3”位置、o代表兩條R接在3T的4,4”位置而N是R的碳數。共聚物的能隙以紫外−可見光光譜及循環伏安法研究;自組裝行為以掠角廣角度X光散射 (grazing incident wide angle X-ray scattering, GIWAXS)及原子力顯微鏡 (atomic force microscope, AFM)研究。
具Ro化學結構的共聚物表現出層板結構,具Ri化學結構的共聚物則表現出六角柱結構及較低的能隙。因為Ro的3T部分較Ri的3T部分共平面,使高分子鏈間的π-π作用力較強,所以具Ro化學結構的高分子鏈較易產生連續的堆疊而形成層板。具Ri化學結構的高分子鏈只有較短程之堆疊,並在側鏈的幫助下形成高分子束,然後高分子束以最密堆積的方式自組裝,產生長程有序的六角柱結構。高分子束有如將主鏈延長之效果,因此增加了有效共軛長度,得到較低的能隙。由GIWAXS的結果顯示,將TPD上的R換成E ,使共聚物具備雙親性的側鏈組合,受到側鏈相分離的影響,可以得到更高度有序的六角柱結構繞射峰值 (√21)。
共聚物在溶液態時,由於烷基側鏈對主鏈造成之電子給予效應,使其最高吸收度波長 (lambda maximum of solution, λmaxsol)隨著側鏈長度增加越紅移且與側鏈位向無關。然而在薄膜態時,Ro較Ri的化學結構能使共聚物的薄膜有更紅的最高吸收度波長 (lambda maximum of film, λmaxfilm),因為具Ro化學結構的高分子鏈間作用力隨著側鏈長度增加而增強,並使λmaxfilm越紅移。我們透過改變予體−受體交替導電共聚物的側鏈,除了可以調控其能隙,並觀察到罕見的高度有序六角柱結構。所有共聚物皆不需經過熱退火即有自組裝結構,且有潛力應用於軟性電子元件的製作。

Donor-acceptor alternating conducting copolymers are potential materials for low cost flexible electronics such as transistors, solar cells, etc. These kinds of polymers are usually rigid and difficult to process. Through side chain engineering, we can not only tune the conformation but also optical bandgap and self assembly behavior of the copolymers.
From Stille coupling reactions, we synthesized four series of donor-acceptor alternating conducting copolymers. They are basis on donor of terthiophene (3T) and acceptor of thieno[3,4-c]pyrrole-4,6-dione (TPD) by varying position, type, and length of side chain. They are named P3T(RiN)TPD(R), P3T(RiN)TPD(E), P3T(RoN)TPD(R), and P3T(RoN)TPD(E), where R is alkyl side chain and E is oligoether side chain, i represents the two R located on 3,3” position of 3T, o represents the two R located on 4,4” position of 3T, and N is the length of R. The bandgap of each copolymer is studied by the UV-Vis spectroscopy and cyclic voltammetry. The self assembly behaviors of copolymers are studied by grazing incident wide angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM).
It is noteworthy that the donor-acceptor conducting copolymer with Ro chemical structure performs lamellar structure. In contrast, the copolymer with Ri exhibits hexagonal cylinder structure and lower bandgap. Ro chemical structure has a more planar 3T building block structure as compared with Ri and thus provides stronger π-π interaction between the macromolecular chains, which results in easier production of continuous stacking and forming of laminates. Meanwhile, for the copolymer with Ri chemical structure, the stacking with short-range order forms macromolecular bundles with the aid of the side chain, afterwards long-range order hexagonal cylinder structure appeared due to the self assembly of macromolecular bundles with close packing. The macromolecular bundles have the effects of extending the length of the main chain, therefore increasing the effective conjugating length and obtaining a lower bandgap. According to the results of GIWAXS, the effect of phase separation leads to a higher degree of ordering in diffraction peak (√21) of hexagonal cylinder structure. This is mainly due to the advantage of replacing R with E on the TPD, which equips copolymer with amphiphilic characteristic.
In solution, due to the donating effect of long alkyl side chain toward the main chain, the λmaxsol of copolymers is shifted to longer wavelength with increasing side chain length regardless the main chain structure of copolymers. In film, the extent of red shift for copolymer containing Ro structure is larger than that containing Ri structure. By tuning the side chains on the donor-acceptor alternating conducting copolymers, we can not only tune the bandgap but also observe rare case of highly ordered hexagonal cylinder structure. All of these copolymers have self assembly structure without thermal annealing, and have the potential to be applied in the fabrication of flexible electronic devices.

摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 viii
英文專有名詞縮寫 ix
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 19
第2章 實驗材料與方法 23
2.1 實驗藥品 23
2.2 實驗儀器 26
2.3 單體的合成 27
2.4 共聚物的合成 53
2.5 材料基本性質的量測 54
第3章 結果與討論 57
3.1 單體的合成與鑑定 57
3.2 共聚物的合成與鑑定 64
3.3 共聚物的微觀形態 66
3.4 共聚物的光電性質 81
3.5 共聚物的熱性質 89
第4章 結論與未來建議 93
4.1 結論 93
4.2 未來建議 94
參考文獻 95

1.H.-C. Liao, C.-S. Tsao, Y.-T. Shao, S.-Y. Chang, Y.-C. Huang, C.-M. Chuang, T.-H. Lin, C.-Y. Chen, C.-J. Su, U. S. Jeng, Y.-F. Chen, W.-F. Su, Bi-hierarchical nanostructures of donor–acceptor copolymer and fullerene for high efficient bulk heterojunction solar cells. Energy & Environmental Science 6, 1938 (2013).
2.J.-F. Lin, W.-C. Yen, C.-Y. Chang, Y.-F. Chen, W.-F. Su, Enhancing organic–inorganic hybrid solar cell efficiency using rod–coil diblock polymer additive. J. Mater. Chem. A 1, 665-670 (2013).
3.C.-C. Ho, C.-A. Chen, C.-Y. Chang, S. B. Darling, W.-F. Su, Isoindigo-based copolymers for polymer solar cells with efficiency over 7%. J. Mater. Chem. A 2, 8026-8032 (2014).
4.H. C. Liao, C. S. Tsao, Y. C. Huang, M. H. Jao, K. Y. Tien, C. M. Chuang, C. Y. Chen, C. J. Su, U. S. Jeng, Y. F. Chen, W. F. Su, Insights into solvent vapor annealing on the performance of bulk heterojunction solar cells by a quantitative nanomorphology study. RSC Advances 4, 6246 (2014).
5.H.-C. Liao, P.-H. Chen, R. Chang, W.-F. Su, Morphological Control Agent in Ternary Blend Bulk Heterojunction Solar Cells. Polymers 6, 2784-2802 (2014).
6.Y. C. Tu, H. Lim, C. Y. Chang, J. J. Shyue, W. F. Su, Enhancing performance of P3HT:TiO(2) solar cells using doped and surface modified TiO(2) nanorods. J Colloid Interface Sci 448, 315-319 (2015).
7.X. Guo, R. P. Ortiz, Y. Zheng, Y. Hu, Y. Y. Noh, K. J. Baeg, A. Facchetti, T. J. Marks, Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. J Am Chem Soc 133, 1405-1418 (2011).
8.X. Guo, R. P. Ortiz, Y. Zheng, M. G. Kim, S. Zhang, Y. Hu, G. Lu, A. Facchetti, T. J. Marks, Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors. J Am Chem Soc 133, 13685-13697 (2011).
9.Q. Wu, M. Wang, X. Qiao, Y. Xiong, Y. Huang, X. Gao, H. Li, Thieno[3,4-c]pyrrole-4,6-dione Containing Copolymers for High Performance Field-Effect Transistors. Macromolecules 46, 3887-3894 (2013).
10.N. Zhou, X. Guo, R. Ponce Ortiz, T. Harschneck, E. F. Manley, S. J. Lou, P. E. Hartnett, X. Yu, N. E. Horwitz, P. Mayorga Burrezo, T. J. Aldrich, J. T. Lopez Navarrete, M. R. Wasielewski, L. X. Chen, R. P. Chang, A. Facchetti, T. J. Marks, Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. J Am Chem Soc 137, 12565-12579 (2015).
11.H. C. Liao, C. P. Hsu, M. C. Wu, C. F. Lu, W. F. Su, Conjugated polymer/nanoparticles nanocomposites for high efficient and real-time volatile organic compounds sensors. Anal Chem 85, 9305-9311 (2013).
12.C.-P. Hsu, T.-W. Zeng, M.-C. Wu, Y.-C. Tu, H.-C. Liao, W.-F. Su, Hybrid poly(3-hexyl thiophene)–TiO2 nanorod oxygen sensor. RSC Advances 4, 22926 (2014).
13.H. Zhou, L. Yang, S. Stoneking, W. You, A Weak Donor−Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Interfaces 2, 1377-1383 (2010).
14.R. Stalder, J. Mei, K. R. Graham, L. A. Estrada, J. R. Reynolds, Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials 26, 664-678 (2014).
15.C.-C. Ho, S.-Y. Chang, T.-C. Huang, C.-A. Chen, H.-C. Liao, Y.-F. Chen, W.-F. Su, Synthesis, characterization and photovoltaic properties of poly(cyclopentadithiophene-alt-isoindigo). Polymer Chemistry 4, 5351-5360 (2013).
16.C.-C. Ho, C.-A. Chen, C.-Y. Chang, S. B. Darling, W.-F. Su, Isoindigo-based copolymers for polymer solar cells with efficiency over 7%. Journal of Materials Chemistry A 2, 8026-8032 (2014).
17.B. Carsten, F. He, H. J. Son, T. Xu, L. Yu, Stille polycondensation for synthesis of functional materials. Chem Rev 111, 1493-1528 (2011).
18.E. Elmalem, A. Kiriy, W. T. S. Huck, Chain-Growth Suzuki Polymerization of n-Type Fluorene Copolymers. Macromolecules 44, 9057-9061 (2011).
19.L. G. Mercier, M. Leclerc, Direct (Hetero)Arylation: A New Tool for Polymer Chemists. Accounts of Chemical Research 46, 1597-1605 (2013).
20.Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 109, 5868-5923 (2009).
21.J. Mei, Z. Bao, Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials 26, 604-615 (2014).
22.J. Lee, A. R. Han, J. Kim, Y. Kim, J. H. Oh, C. Yang, Solution-Processable Ambipolar Diketopyrrolopyrrole–Selenophene Polymer with Unprecedentedly High Hole and Electron Mobilities. Journal of the American Chemical Society 134, 20713-20721 (2012).
23.J. Lee, A. R. Han, H. Yu, T. J. Shin, C. Yang, J. H. Oh, Boosting the Ambipolar Performance of Solution-Processable Polymer Semiconductors via Hybrid Side-Chain Engineering. Journal of the American Chemical Society 135, 9540-9547 (2013).
24.T. Lei, J.-Y. Wang, J. Pei, Design, Synthesis, and Structure–Property Relationships of Isoindigo-Based Conjugated Polymers. Accounts of Chemical Research 47, 1117-1126 (2014).
25.N. Vukmirovic, A comparative study of electronic properties of disordered conjugated polymers. Physical Chemistry Chemical Physics 15, 3543-3551 (2013).
26.D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384-388 (2014).
27.S. Ko, D. H. Kim, A. L. Ayzner, S. C. B. Mannsfeld, E. Verploegen, A. M. Nardes, N. Kopidakis, M. F. Toney, Z. Bao, Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics. Chemistry of Materials 27, 1223-1232 (2015).
28.V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Bredas, Charge Transport in Organic Semiconductors. Chemical Reviews 107, 926-952 (2007).
29.D. Niedzialek, V. Lemaur, D. Dudenko, J. Shu, M. R. Hansen, J. W. Andreasen, W. Pisula, K. Mullen, J. Cornil, D. Beljonne, Probing the Relation Between Charge Transport and Supramolecular Organization Down to Angstrom Resolution in a Benzothiadiazole-Cyclopentadithiophene Copolymer. Advanced Materials 25, 1939-1947 (2013).
30.M. S. Chen, O. P. Lee, J. R. Niskala, A. T. Yiu, C. J. Tassone, K. Schmidt, P. M. Beaujuge, S. S. Onishi, M. F. Toney, A. Zettl, J. M. J. Frechet, Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation. Journal of the American Chemical Society 135, 19229-19236 (2013).
31.S. Fall, L. Biniek, Y. Odarchenko, D. V. Anokhin, G. de Tournadre, P. Leveque, N. Leclerc, D. A. Ivanov, O. Simonetti, L. Giraudet, T. Heiser, Tailoring the microstructure and charge transport in conjugated polymers by alkyl side-chain engineering. Journal of Materials Chemistry C 4, 286-294 (2016).
32.J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, Siloxane-Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin-Film Transistors. Journal of the American Chemical Society 133, 20130-20133 (2011).
33.T. Lei, J.-H. Dou, J. Pei, Influence of Alkyl Chain Branching Positions on the Hole Mobilities of Polymer Thin-Film Transistors. Advanced Materials 24, 6457-6461 (2012).
34.X. Chen, Z. Zhang, Z. Ding, J. Liu, L. Wang, Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices. Angewandte Chemie International Edition, n/a-n/a (2016).
35.X. Guo, N. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. P. Ortiz, J. T. L. Navarrete, S. Li, J. Strzalka, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Polymer solar cells with enhanced fill factors. Nature Photonics 7, 825-833 (2013).
36.C. D. Perchonock, I. Uzinskas, M. E. McCarthy, K. F. Erhard, J. G. Gleason, M. A. Wasserman, R. M. Muccitelli, J. F. DeVan, S. S. Tucker, Synthesis and structure-activity relationship studies of a series of 5-aryl-4,6-dithianonanedioic acids and related compounds: a novel class of leukotriene antagonists. Journal of Medicinal Chemistry 29, 1442-1452 (1986).
37.C. B. Nielsen, T. Bjrnholm, New Regiosymmetrical Dioxopyrrolo- and Dihydropyrrolo-Functionalized Polythiophenes. Organic Letters 6, 3381-3384 (2004).
38.Z. Wu, F. Ban, R. J. Boyd, Modeling the Reaction Mechanisms of the Imide Formation in an N-(o-Carboxybenzoyl)-l-amino Acid. Journal of the American Chemical Society 125, 3642-3648 (2003).
39.L. Biniek, C. L. Chochos, N. Leclerc, G. Hadziioannou, J. K. Kallitsis, R. Bechara, P. Leveque, T. Heiser, A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances. Journal of Materials Chemistry 19, 4946-4951 (2009).
40.J. Rivnay, S. C. B. Mannsfeld, C. E. Miller, A. Salleo, M. F. Toney, Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chemical Reviews 112, 5488-5519 (2012).
41.B. S. Ong, Y. Wu, P. Liu, S. Gardner, High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. Journal of the American Chemical Society 126, 3378-3379 (2004).
42.S. Ko, E. T. Hoke, L. Pandey, S. Hong, R. Mondal, C. Risko, Y. Yi, R. Noriega, M. D. McGehee, J.-L. Bredas, A. Salleo, Z. Bao, Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives. Journal of the American Chemical Society 134, 5222-5232 (2012).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top