|
[1]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1μW successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261-1265, July 2003. [2]A. N. Karanicolas, H. S. Lee, and K. L. Bacrania, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1207-1215, Dec. 1993. [3]B. Murmann and B. E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,“ IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, Dec. 2003. [4]J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658-2668, Dec. 2006. [5]L. Brooks and H. S. Lee, “A zero-crossing-based 8-bit 200 MS/s pipelined ADC,” IEEE J. Solid-State Circuits, vol. 42, no.12, pp. 2677-2687, Dec. 2007. [6]N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1196-1205, June 2007. [7]Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500 KS/s low power SAR ADC for bio-medical applications,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 228-231. [8]H. K. Hong, H. W. Kang, B. Sung, C. H. Lee, M. Choi, H. J. Park, and S. T. Ryu, “An 8.6 ENOB 900MS/s time-interleaved 2b/cycle SAR ADC with a 1b/cycle reconfiguration for resolution enhancement,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 470-471. [9]H. K. Hong, W. Kim, S. J. Park, M. Choi, H. J. Park, and S.T. Ryu, “A 7b 1GS/s 7.2mW nonbinary 2b/cycle SAR ADC with register-to-DAC direct control,” IEEE CICC, Sep. 2012. [10]S. S. Wong, U-F. Chio, Y. Zhu, S. W. Sin, S. P. U, and R. P. Martins, “A 2.3mW 10-bit 170 MS/s two-step binary-search assisted time-interleaved SAR ADC,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1-12, Aug. 2013. [11]W. Liu, P. Huang, and Y. Chiu, “A 12-bit 50MS/s 3.3-mW SAR ADC with background digital calibration,” IEEE CICC, Sep. 2012. [12]W. C. Black and D. A. Hodges, “Time-interleaved converter arrays,” IEEE J. Solid-State Circuits, vol. 15, no. 12, pp. 1022-1029, Dec. 1980. [13]Y.-C. Lien, “A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2012, pp. 88-89. [14]L. Kull et al., “A 32 mW 8 b 8.8 GS/s SAR ADC with low-power capacitive reference buffers in 32 nm digital SOI CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2013, pp. 260–261. [15]W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13μm CMOS ADC Array Achieving Over 60dB SFDR with Adaptive Digital Equalization,” in IEEE ISSCC. Dig. Tech. Papers, Feb. 2009, pp. 82–83. [16]S. M. Jamal et al., “A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1618–1627, Dec. 2002 [17]C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 848–858, Apr. 2011. [18]M. El-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 838–847, Apr. 2011. [19]B. Razavi, “Design considerations for interleaved ADCs,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, Aug. 2013. [20]B. Razavi, Principles of Data Conversion System Design, Wiley-IEEE Press, New York, 1995. [21]D. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, 1997. [22]F. Maloberti, Data Converters, Springer, Dordrecht, 2007. [23]W. Kester, The Data Converter Handbook, Analog Device, Mar. 2004.[Online] Available:www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html [24]M. Gustavsson, J. J. Wikner, and N. Tan, CMOS Data Converters for Communi -cations, Kluwer Academic Publisher, Boston, 2000. [25]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 731–740, Apr. 2010. [26]J. H. Tsai, Y. J. Chen, M. H. Shen, and P. C. Huang, “A 1-V, 8b, 40MS/s, 113μW charge-recycling SAR ADC with a 14μW asynchronous controller,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2011, pp. 264–265. [27]J. Mulder et al., “An 800 MS/s dual-residue pipeline ADC in 40 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 184–185. [28]D. Stepanovic and B. Nikolic, “A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS,” IEEE J. Solid State Circuits, vol.48, no. 4, pp. 971–982, Apr. 2013. [29]S. Lee, A. P. Chandrakasan, and H. S. Lee, “A 1GS/s 10b 18.9mW time-interleaved SAR ADC with background timing-skew calibration,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 384–385. [30]N. Le Dortz et al., “A 1.62 GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70 dBFS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp.386–388. [31]P. Nuzzo et al., “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1441–1454, Jul. 2008. [32]F. Goodenough, "Analog technology of all varieties dominate ISSCC," Electronic Design, pp. 96, Feb. 1996.
|