跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏衍昕
研究生(外文):Yen-Hsin Wei
論文名稱:具背景時間偏移較正十二位元六億取樣頻率多通道類比數位轉換器
論文名稱(外文):A 12-bit 600MS/s Time-Interleaved SAR ADC with Background Timing Skew Calibration
指導教授:李泰成
口試委員:劉深淵陳信樹謝志成
口試日期:2014-11-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:多通道類比數位轉換器時間偏斜校正
外文關鍵詞:Time-Interleaved ADCtiming skew calibration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個四通道十二位元連續漸進暫存類比數位轉換器,使用了提出的數位較正方式來補償時間偏移誤差,轉換器達到六億赫茲取樣頻率。多通道類比數位轉換器共使用了四個通道。數位混波使用來估計時間偏移量,再使用本論文所提出的延遲取樣雙核心方法來做時間偏移的校正。晶片用四十奈米CMOS製成製作,改善多通道寄生頻率音調從-50分貝到-76分貝,並且達到61.7分貝的訊號對雜訊與諧波比,功耗23毫瓦從一個0.9伏的供應電壓。品質因數(FoM)是38.7fJ/conversion-step,核心電路佔據0.3毫米平方面積。

A four channel time-interleaved 12-b SAR ADC, employing the proposed digital calibration technique to correct timing skew, achieves a 600-MHz sampling rate. The interleaved ADC composed of four channel SAR ADC. Digital mixing method is used to estimate timing skew, and proposed dual core with delay sampling is used to correct the timing skew. The ADC has been fabricated in a 40-nm CMOS technology, improves interleaving spurious tones from -50dB to -76dB and achieves a 61.7-dB SNDR while dissipating 23 mW from a 0.9-V power supply. The figure of merit (FoM) is 38.7 fJ/conversion-step and the active area is 0.3 mm2

誌謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2 Fundamentals of ADCs 5
2.1 Introduction 5
2.2 ADC Performance Metrics 5
2.2.1 Differential and Integral Nonlinearity (DNL, INL) 5
2.2.2 Signal-to-Noise Ratio (SNR) 8
2.2.3 Signal-to-Noise-and-Distortion Ratio (SNDR) 9
2.2.4 Effective Number-of-Bits (ENOB) 10
2.2.5 Spurious-Free Dynamic Range (SFDR) 10
2.2.6 Figure of Merit (FoM) 11
2.3 Architectures of Analog-to-Digital Converters 11
2.3.1 Flash ADC 11
2.3.2 Subrange ADC 12
2.3.3 Successive Approximation ADC 13
2.3.4 Interleaved ADC 15
2.4 Error Sources in Interleaved ADCs 16
2.4.1 Offset Mismatch 17
2.4.2 Gain Mismatch 18
2.4.3 Phase Skew 19
Chapter 3 Calibration Scheme for Timing Mismatches 21
3.1 Introduction 21
3.2 Timing Skew Calibration 21
3.3 Digital Mixing Method 23
3.4 Proposed Digital Timing Skew Correction Scheme. 25
3.4.1 Principle 25
3.4.2 Circuit description 28
3.4.3 Skew Calibration Algorithm 30
3.5 Frequency Domain Analysis 34
3.6 Design Consideration 41
3.7 Behavior Simulation 43
3.8 Summary 44
Chapter 4 Circuit Implementation 45
4.1 Introduction 45
4.2 Bootstrapped switch 45
4.3 Comparator 46
4.4 Data register 48
4.5 Capacitive DAC 51
4.6 Clock Generator 57
4.7 Post-Layout Simulation 59
4.8 Channel Mismatch Correction 60
4.9 Summary 62
Chapter 5 Experimental Results 63
5.1 Introduction 63
5.2 Print Circuit Board Design 63
5.3 Measurement Setup 64
5.4 Measurement Results 65
5.4.1 12-bit 600MS/s Time-Interleaved ADC 65
5.4.2 Timing Skew Calibration 71
5.5 Summary 75
5.6 Conclusions 76
5.7 Future Works 76
Bibliography 77



[1]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1μW successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261-1265, July 2003.
[2]A. N. Karanicolas, H. S. Lee, and K. L. Bacrania, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1207-1215, Dec. 1993.
[3]B. Murmann and B. E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,“ IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, Dec. 2003.
[4]J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658-2668, Dec. 2006.
[5]L. Brooks and H. S. Lee, “A zero-crossing-based 8-bit 200 MS/s pipelined ADC,” IEEE J. Solid-State Circuits, vol. 42, no.12, pp. 2677-2687, Dec. 2007.
[6]N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1196-1205, June 2007.
[7]Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500 KS/s low power SAR ADC for bio-medical applications,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 228-231.
[8]H. K. Hong, H. W. Kang, B. Sung, C. H. Lee, M. Choi, H. J. Park, and S. T. Ryu, “An 8.6 ENOB 900MS/s time-interleaved 2b/cycle SAR ADC with a 1b/cycle reconfiguration for resolution enhancement,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 470-471.
[9]H. K. Hong, W. Kim, S. J. Park, M. Choi, H. J. Park, and S.T. Ryu, “A 7b 1GS/s 7.2mW nonbinary 2b/cycle SAR ADC with register-to-DAC direct control,” IEEE CICC, Sep. 2012.
[10]S. S. Wong, U-F. Chio, Y. Zhu, S. W. Sin, S. P. U, and R. P. Martins, “A 2.3mW 10-bit 170 MS/s two-step binary-search assisted time-interleaved SAR ADC,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1-12, Aug. 2013.
[11]W. Liu, P. Huang, and Y. Chiu, “A 12-bit 50MS/s 3.3-mW SAR ADC with background digital calibration,” IEEE CICC, Sep. 2012.
[12]W. C. Black and D. A. Hodges, “Time-interleaved converter arrays,” IEEE J. Solid-State Circuits, vol. 15, no. 12, pp. 1022-1029, Dec. 1980.
[13]Y.-C. Lien, “A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2012, pp. 88-89.
[14]L. Kull et al., “A 32 mW 8 b 8.8 GS/s SAR ADC with low-power capacitive reference buffers in 32 nm digital SOI CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2013, pp. 260–261.
[15]W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13μm CMOS ADC Array Achieving Over 60dB SFDR with Adaptive Digital Equalization,” in IEEE ISSCC. Dig. Tech. Papers, Feb. 2009, pp. 82–83.
[16]S. M. Jamal et al., “A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1618–1627, Dec. 2002
[17]C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 848–858, Apr. 2011.
[18]M. El-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 838–847, Apr. 2011.
[19]B. Razavi, “Design considerations for interleaved ADCs,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, Aug. 2013.
[20]B. Razavi, Principles of Data Conversion System Design, Wiley-IEEE Press, New York, 1995.
[21]D. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, 1997.
[22]F. Maloberti, Data Converters, Springer, Dordrecht, 2007.
[23]W. Kester, The Data Converter Handbook, Analog Device, Mar. 2004.[Online] Available:www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html
[24]M. Gustavsson, J. J. Wikner, and N. Tan, CMOS Data Converters for Communi -cations, Kluwer Academic Publisher, Boston, 2000.
[25]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 731–740, Apr. 2010.
[26]J. H. Tsai, Y. J. Chen, M. H. Shen, and P. C. Huang, “A 1-V, 8b, 40MS/s, 113μW charge-recycling SAR ADC with a 14μW asynchronous controller,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2011, pp. 264–265.
[27]J. Mulder et al., “An 800 MS/s dual-residue pipeline ADC in 40 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 184–185.
[28]D. Stepanovic and B. Nikolic, “A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS,” IEEE J. Solid State Circuits, vol.48, no. 4, pp. 971–982, Apr. 2013.
[29]S. Lee, A. P. Chandrakasan, and H. S. Lee, “A 1GS/s 10b 18.9mW time-interleaved SAR ADC with background timing-skew calibration,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 384–385.
[30]N. Le Dortz et al., “A 1.62 GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70 dBFS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp.386–388.
[31]P. Nuzzo et al., “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1441–1454, Jul. 2008.
[32]F. Goodenough, "Analog technology of all varieties dominate ISSCC," Electronic Design, pp. 96, Feb. 1996.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top