跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅啟仁
研究生(外文):Ci-Ren Luo
論文名稱:銳鈦礦高能球磨之相變態研究
論文名稱(外文):Phase transformation of anatase in high-energy ball milling
指導教授:黃士龍黃士龍引用關係
指導教授(外文):Shyh-Lung Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:TiO2 -(B)TiO2-Ⅱ行星式球磨相變態光觸媒銳鈦礦
外文關鍵詞:TiO2 -(B)AnataseTiO2-ⅡBall millingPhotocatalystPhase transformation
相關次數:
  • 被引用被引用:5
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究Anatase相氧化鈦於高能行星式球磨中之相變態過程,Anatase相粉末首先使用不鏽鋼模具並添加酒精研磨0.1 - 12 hrs,並使用X光繞射儀(XRD)與解析式電子顯微鏡(AEM)進行相組成分析。XRD結果顯示研磨粉末中包含殘留的Anatase相、中間相TiO2-Ⅱ與最終產物Rutile相。其中,當研磨時間達到7 hrs時 TiO2-Ⅱ相比例增加至50~60 %。此外,AEM分析更在球磨粉末中觀察到第四種結構,單斜晶TiO2(B)相。此TiO2(B)相出現為單相的奈米粉粒或以薄層狀(厚度約為2 – 35 nm)出現在混相的Anatase-TiO2(B)、TiO2(B)-TiO2-II晶粒中。由繞射圖得知這些混相晶粒分別遵循以下晶向關係: Anatase - TiO2(B): <010>A ∥<010> B、{103}A ∥{-201} B;TiO2(B)-TiO2-Ⅱ: <-22-1>Ⅱ∥<010> B 、{10-2}Ⅱ∥{-20-2}B;TiO2-II – rutile : <010>II ∥<111>R,其可能是由高能球磨剪應力所造成。根據以上的發現,以及已知之TiO2-Ⅱ<-> Rutile之剪變形行為,證實在高能球磨中Anatase相變態進程為: anatase->TiO2(B)->TiO2-II->rutile。
The transformation pathway of anatase TiO2 in high-energy planetary ball-milling was studied. Anatase powders were first milled using stainless ball/jar with the additive of ethanol alcohol for 10 mins to 12 hrs, followed by structure characterization by X-ray diffractometer (XRD) and analytical electron microscope (AEM). XRD revealed complicated phase assemblages in all milled powders, including residue anatase, the transitional TiO2-II phase and the final product of rutile. In the powders milled for up to ~7 hrs, the TiO2-II phase contents could reach ~50-60%. In addition to the above three polymorphs, AEM further identified a fourth monoclinic TiO2 (B) phase in the as-milled TiO2 powders . This TiO2 (B) phase occurs either as isolated nanosized particles or as thin lamellae of ~2-35 nm in thickness in the mixed-phase anatase-TiO2 (B) or TiO2 (B)-TiO2-II particles. Electron diffraction patterns showed that the mixed-phase powders follow specific crystallographic orientation relationships: <010>A ∥<010> B、{103}A ∥{-201} B for anatase-TiO2 (B); <-22-1>Ⅱ∥<010> B 、{10-2}Ⅱ∥{-20-2}B for TiO2 (B)-TiO2-II; <010>II ∥<111>R for TiO2-II – rutile, all of which being formed by sequential shear deformation of TiO2 polymorphs in high-energy milling. These observations, together with the well-known shear transformation of TiO2-II to rutile, unequivocally establish the anatase to rutile transformation pathway during high-energy milling process as: anatase => TiO2 (B) => TiO2-II => rutile, and open the doorway for the future mass production of nano-sized mixed-phase TiO2 powders with various phase assemblages and unique photocatalyst properties.
第一章 前言 1
第二章 文獻回顧 3
2.1 二氧化鈦 (Titanium dioxide,TiO2) 的晶體結構 3
2.2 二氧化鈦之相變態 7
2.3 高能球磨法 10
2.3.1 高能球磨法參數控制 11
2.3.2 高能球磨對二氧化鈦的影響 13
2.4 二氧化鈦的應用 16
2.4.1 二氧化鈦光觸媒機制 16
2.4.2 光觸媒反應-亞甲基藍降解反應 18
2.5 X光繞射峰值變寬探討 19
2.6 解析式電子顯微鏡 (AEM) 20
第三章 實驗方法與步驟 21
3.1 實驗設備、藥品 21
3.2 行星式球磨 21
3.3 亞甲基藍降解實驗 24
3.3.1 光觸媒反應器 24
3.3.2 亞甲基藍降解步驟 25
3.4 分析方法 26
3.4.1 XRD分析 26
3.4.2 AEM試片製備 26
3.4.3 AEM顯微結構觀察 27
第四章 結果與討論 29
4.1 高能球磨製程 29
4.1.1 乾球磨 29
4.1.2 Binder之選用 31
4.1.3 Binder添加量 32
4.1.4球磨速度 33
4.1.5球磨時間 34
4.2 亞甲基藍降解 37
4.3 AEM分析 40
4.3.1 Ring pattern 41
4.3.2 Anatase 43
4.3.3 Anatase與TiO2(B)相 45
4.3.4純TiO2(B)相 52
4.3.5 TiO2–II相與 TiO2(B)相 56
4.3.6純TiO2–II相 59
4.3.7 TiO2–II相與Rutile相 60
4.3.8 Rutile相 61
4.3.9 AEM電子束溫度對相變態的影響 63
第五章 結論 67
5.1 Anatase高能球磨之相變化 67
5.2 AEM電子束溫度對相變態的影響 67
5.3 Anatase球磨粉末之光觸媒性質 67
參考文獻 69
[1] J. S. Olsen et al., J Phys Chem Solids, Vol.60, 229–233, 1999
[2] A. Fujishima et al., Nature, Vol.238, 37, 1972
[3] D. C. Hurum et al., J Phys Chem B, Vol.107, 4545-4549, 2003
[4] W. P. Liu et al., J Miner Petrol, Vol.28, No.3, 14-18, 2008
[5] K. Bendeliani et al., Geochem Int, Vol.3, 387, 1966
[6] L. Vegard et al., Phil Mag, Vol.32, 65-96, 1916
[7] L. Vegard et al., Phil Mag, Vol.32, 505-518, 1916
[8] L. Pauling, Z. Kristallogr., Vol.67, 377-404, 1928
[9] D. H. Lindsley, “Oxide Minerals: Petrologic and Magnetic Significance”,
The Mineralogical Society of America, 1991
[10] P. Niggli, Z. Kristallogr. Vol.56, 119, 1921
[11] J. F. Banfield et al., Am Mineral, Vol.76, 343-353, 1991
[12] S. Dinesh et al., Biomaterials, Vol.27, 4296-4303, 2006
[13] R. Marchand et al., Mat Res Bull, Vol.15, 1129-1133, 1980
[14] B. G.Hyde et al., “Inorganic Crystal Structures”, Wiley, 1989
[15] S. L. Hwang et al., Science, Vol.288, 321-324, 2000
[16] J. Huberty et al., J Solid State Chem, Vol.181, 508–514, 2008
[17] J. G. Li et al., Acta Mater, Vol.52, 5143–5150, 2004
[18] M. Akaogi et al., “Program and Abstracts of Papers Presented at the 30th High-Pressure Conference of Japan”, 166-167, Sendai, Japan, 1989
[19] J. Tang et al., J Am Ceram Soc, Vol.76, 796-98, 1993
[20] S. C. Liao et al., NanoStructured Materials, Vol.11, No.4, 553–557, 1999
[21] A. Gajovi´c et al., J Alloys and Compounds, Vol.398 (2005) 188–199
[22] L. Brohan et al., Mat Res Bull, Vol.17, 355-361, 1982
[23] J. F. Banfield et al., Am Mineral, Vol.76, 343-353, 1991
[24] J. F. Banfield et al., Am Mineral, Vol.77, 545-557, 1992
[25] J. S. Benjamin et al., Metall Trans, Vol.1, 2943, 1970
[26] E. Hellstern et al., J Appl Phys, Vol.65, 305, 1989
[27] C. Gente et al., Phys Rev B, Vol.48, 13244, 1993
[28] D. G. Morris et al., Mater Sci Eng, Vol.104, 201, 1988
[29] B. S. Murty et al., Mater Forum, Vol.16, 19, 1992
[30] B. D. Cullity et al., “Elements of X-ray Diffraction”, Addison-Weseley, 2001
[31] A. Gajovic et al., J Mol Struct, 563-564, 315-320, 2001
[32] J. Hu et al., Mater Lett, Vol.53, 421-424, 2002
[33] X. Pan et al., J Solid State Chem, Vol.177, 4098–4103, 2004
[34] X. Pan et al., Mater Lett, Vol.58, 513–515, 2004
[35] H. Dutta et al., Physica E, Vol.36, 17–27, 2007
[36] S. Coste et al., J Alloys and Compounds, 434–435, 2007
[37] R. Ren et al., J Mater Sci, Vol.35, 6015 – 6026, 2000
[38] R. Wang et al., Nature, Vol.388, 431, 1997
[39] M. Bekhole et al., Wat sci Tech, Vol.35, 11-12, 95-100, 1997
[40] K. Sunda et al., Environ Sci Technol, Vol.32, No.5, 726-728, 1998
[41] R. Asahi et al., Science, Vol.293, 269-271, 2001
[42] K. Maeda et al., J Phys Chem C, Vol.111, 7851-7861, 2007
[43] M. Gratzel et al., Nature, Vol.414, 338-344, 2001
[44] A. Kudo et al., Int J Hydrogen Energy, Vol.31, 197-202, 2006
[45] C. E. Rice et al., Appl Phys Lett, Vol.35, 563, 1979
[46]許樹恩、吳伯泰,”X光繞射原理與材料結構分析”, 中國材料科學學會, 中華民國八十五年九月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊