跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱瑀涵
研究生(外文):Yu-Han Chiu
論文名稱:利用糖尿病及血脂異常老鼠模式探討龍鬚菜萃取物對其副病變之作用
論文名稱(外文):Effects of Sechium edule Shoot Extracts on Diabetes Mellitus, Diabetic Complications and Associated Lipid Metabolic Disorders in a rat model
指導教授:王朝鐘王朝鐘引用關係張雲菁
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化微生物免疫研究所
學門:生命科學學門
學類:其他生命科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:84
中文關鍵詞:龍鬚菜糖尿病肥胖脂質代謝
外文關鍵詞:Sechium edule shootsDiabetes mellitusObesityLipid metabolism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現行流行病學研究統計指出,多種危險因子與第二型糖尿病的發病有關,其中肥胖是一項最常見的因素,並且伴隨著代謝症候群的發生。根據實驗室之前的研究,龍鬚菜水萃物(water extracts of Sechium edule shoots, SWE)可以有效抑制油酸所誘導肝臟脂肪合成和脂肪分解增加。因此,本研究的目的是探討SWE對高油脂飲食(High fat diet, HFD)配合低劑量Streptozotocin (STZ)所誘發出的高血脂高血糖的糖尿病大鼠的抑制作用。將大鼠隨機分為4組:control組、HFD + STZ組、HFD + STZ + SWE0.5%組、HFD + STZ + SWE1.0%組。確認施打STZ之組別其血糖> 200 mg/dl後,即可開始加藥進行八週的試驗,於犧牲後將血清和組織進行分析。結果發現SWE0.5%及1.0%組的血糖有明顯比HFD + STZ組下降約20%。然而,血清中三酸甘油酯和及總膽固醇表現量並無受顯著影響。從組織切片做觀察,利用Hematoxylin-Eosin stain (H&E stain)及油紅(Oil red O stain)染色分析,從加藥組與誘導組做比較,觀察到餵食SWE可明顯改善肝臟中脂肪泡的堆積。另外,腎臟組織利用H&E、Periodic Acid-Schiff stain和Masson氏染色分析,結果表明,SWE亦可以避免由高血糖所引起的腎間質增生、醣質推積以及膠原蛋白增生。整體而言,本篇實驗證明在由高油脂飲食誘發之第二型糖尿病大鼠模式上,透過龍鬚菜萃取物的添加,可以穩定血液中葡萄糖的表現量,亦可以減緩高血糖所引起的副病變傷害,未來對於在代謝症候群的治療上亦有很大的幫助。

Epidemiological studies indicate that obesity is important risk factors for several diseases, particularly type 2 diabetes. According to our previous study, the water extracts of Sechium edule shoots (SWE) inhibits oleic acid-induced hepatic lipogenesis and increases lipolysis. Therefore, the aim of this study is to investigate the anti-diabetic effects of SWE on high fat diet (HFD)-induced diabetes mellitus (DM). Sprague-Dawley (SD) rats were fed with HFD and then followed by low dose of streptozotocin (STZ) intraperitoneal injection result in type 2 diabetes. Rats were divided into 4 group: control group , HFD+STZ group , HFD+STZ+SWE0.5% group , HFD+STZ+SWE1.0% group. After completing the induction (mimic DM blood sugar level > 200 mg/dl), the animals were given 0.5% or 1% of SWE for further 8 weeks, and then the serum and tissue were collected to analyze. The blood glucose level in 0.5% and 1% SWE-treated groups were substantially reduced 20% as compared to the HFD+STZ group. The kidney tissues were analyzed by using Hematoxylin-Eosin stain, Periodic Acid-Schiff stain and Masson''s staining. The results show that SWE decrease mesangial matrix expansion in the glomerular, accumulation of saccharide and collagen fiber expansion. Collectively, these data providence evidence that when supplemented SWE to a diet, can improve glucose homeostasis and improved insulin sensitivity in insulin resistant induced rats. This result suggests that Sechium edule shoots has potential to influence the development of metabolic syndrome.

目錄 I
縮寫檢索表 III
中文摘要 IV
Abstract VI
一、文獻探討 1
1.1. 糖尿病簡介 1
1.1.1. 糖尿病之定義與診斷標準 1
1.1.2. 糖尿病之分類 2
1.1.3. 糖尿病之症狀 5
1.2. 糖尿病之併發症 9
1.2.1. 急性併發症 9
1.2.2. 慢性併發症 10
1.3. 調控脂質代謝相關蛋白 13
1.3.1. AMPK(AMP-activated protein kinase) 13
1.3.2. FAS(Fatty acid synthase) 14
1.3.3. HMGCoR(HMG CoA reductase) 14
1.3.4. SREBPs(Sterol regulatory element-binding proteins) 15
1.3.5. CPT-1(Carnitine palmitoyl transferase I) 16
1.4. 糖尿病相關機制 18
1.4.1. 糖尿病與氧化壓力(oxidative stress) 18
1.4.2. 糖尿病與多元醇路徑(polyol pathway) 20
1.4.3. 糖尿病與糖化終產物(Advanced glycation end-product, AGE) 21
1.4.4. 糖尿病與蛋白激酶C路徑(Protein kinase C, PKC) 23
1.5. 腎臟與糖尿病腎病變 24
1.5.1. 腎臟之簡介 24
1.5.2. 糖尿病腎病變之病程[20, 52] 25
1.6. 糖尿病動物模式 27
1.6.1. 自發型 27
1.6.2. 誘發型 27
1.7. 龍鬚菜簡介 31
1.7.1. 龍鬚菜背景及型態 31
1.7.2. 產期及產地 31
1.7.3. 龍鬚菜之所含成份 31
1.7.4. 功效及應用 32
二、研究動機 33
三、實驗模式與架構 34
四、實驗材料與方法 35
4.1. 實驗材料及設備 35
4.2. 實驗方法 38
4.2.1. 龍鬚菜萃取物的製備 38
4.2.2. 實驗動物 38
4.2.3. 第二型糖尿病動物模式建立與實驗設計 38
4.2.4. 飼料組成與配置 39
4.2.5. 動物血糖之檢測 40
4.2.6. 動物血漿中胰島素濃度之分析 40
4.2.7. 動物檢體之收集 40
4.2.8. 西方點墨法 41
4.2.9. 組織病理切片之染色 43
4.2.10. 血清中生化值分析 46
4.2.11. 血液中酵素測定 47
4.2.12. 肝臟中脂質觀察 48
4.2.13. 統計分析 49
五、實驗結果 50
5.1. 誘發第二型糖尿病之實驗動物模式 50
5.2. SWE具有穩定第二型糖尿病大鼠血糖代謝之的效果 50
5.2.1. 觀察八週實驗大鼠血糖變化值 50
5.2.2. 觀察八週實驗大鼠胰島素變化值 51
5.2.3. 觀察大鼠HbA1c表現量 51
5.3. SWE對高脂飼料誘導之第二型糖尿病大鼠之臟器重量影響 52
5.3.1. 觀察SWE對大鼠肝臟重量的影響 52
5.3.2. 觀察SWE對大鼠腎臟重量的影響 52
5.4. SWE對於第二型糖尿病大鼠血清生化值之影響 53
5.4.1. 脂質代謝指標 53
5.4.2. 肝功能指標 53
5.4.3. 腎功能指標 54
5.5. SWE對於第二型糖尿病大鼠肝臟脂質含量之影響 54
5.5.1. 肝臟所含之TG及TC 54
5.5.2. SWE對於第二型糖尿病大鼠肝臟切片之影響 55
5.5.3. SWE調控第二型糖尿病大鼠肝臟脂肪酸代謝相關蛋白 55
5.6. SWE具有保護第二型糖尿病大鼠之腎臟的作用 57
5.6.1. 於HE stain切片觀察腎絲球萎縮以及腎間質表現量 57
5.6.2. 於PAS切片觀察醣類堆積情形 58
5.6.3. 於Masson氏三色染色法觀察膠原蛋白增生情形 58
六、討論 59
七、實驗結果圖表 63
八、參考文獻 78



1.Association, A.D., Standards of medical care for patients with diabetes mellitus. Puerto Rico Health Sciences Journal, 2013. 20(2).
2.Weyer, C., et al., The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. The Journal of clinical investigation, 1999. 104(6): p. 787-794.
3.Buchanan, T.A. and A.H. Xiang, Gestational diabetes mellitus. The Journal of clinical investigation, 2005. 115(3): p. 485-491.
4.Surwit, R.S., M.S. Schneider, and M.N. Feinglos, Stress and diabetes mellitus. Diabetes care, 1992. 15(10): p. 1413-1422.
5.Erejuwa, O.O., Management of diabetes mellitus: could simultaneous targeting of hyperglycemia and oxidative stress be a better panacea? International journal of molecular sciences, 2012. 13(3): p. 2965-2972.
6.Pessin, J.E. and A.R. Saltiel, Signaling pathways in insulin action: molecular targets of insulin resistance. The Journal of clinical investigation, 2000. 106(2): p. 165-169.
7.Alberiche, M., R.C. Bonadonna, and M. Muggeo, Prevalence of insulin resistance in metabolic disorders. Diabetes, 1998. 47: p. 1643.
8.Mooradian, A.D., Dyslipidemia in type 2 diabetes mellitus. Nature clinical practice Endocrinology & metabolism, 2009. 5(3): p. 150-159.
9.Goldberg, I.J., Diabetic dyslipidemia: causes and consequences. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(3): p. 965-971.
10.Cryer, P.E., S.N. Davis, and H. Shamoon, Hypoglycemia in diabetes. Diabetes care, 2003. 26(6): p. 1902-1912.
11.Kerl, M.E., Diabetic ketoacidosis: pathophysiology and clinical and laboratory presentation. Compendium, 2001. 23(3): p. 220-8.
12.Kitabchi, A.E., et al., Hyperglycemic crises in adult patients with diabetes a consensus statement from the American Diabetes Association. Diabetes care, 2006. 29(12): p. 2739-2748.
13.Kitabchi, A.E. and E.A. Nyenwe, Hyperglycemic crises in diabetes mellitus: diabetic ketoacidosis and hyperglycemic hyperosmolar state. Endocrinology and metabolism clinics of North America, 2006. 35(4): p. 725-751.
14.Laight, D.W., M.J. Carrier, and E.E. Änggård, Endothelial cell dysfunction and the pathogenesis of diabetic macroangiopathy. Diabetes/metabolism research and reviews, 1999. 15(4): p. 274-282.
15.Bernardi, S., et al., Cell-based therapies for diabetic complications. Experimental diabetes research, 2011. 2012.
16.Rudijanto, A., The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones, 2007. 39(2): p. 86-93.
17.Boulton, A.J., et al., Diabetic neuropathies a statement by the American Diabetes Association. Diabetes care, 2005. 28(4): p. 956-962.
18.DAVID, E.J. and M.F. Ohio JAMES, Evaluation and prevention of diabetic neuropathy. Am Fam Physician, 2005. 71(11): p. 2123-2128.
19.Ciulla, T.A., A.G. Amador, and B. Zinman, Diabetic retinopathy and diabetic macular edema pathophysiology, screening, and novel therapies. Diabetes care, 2003. 26(9): p. 2653-2664.
20.Gross, J.L., et al., Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes care, 2005. 28(1): p. 164-176.
21.Schena, F.P. and L. Gesualdo, Pathogenetic mechanisms of diabetic nephropathy. Journal of the American Society of Nephrology, 2005. 16(3 suppl 1): p. S30-S33.
22.Oakhill, J., J. Scott, and B. Kemp, Structure and function of AMP‐activated protein kinase. Acta physiologica, 2009. 196(1): p. 3-14.
23.Misra, P. and R. Chakrabarti, The role of AMP kinase in diabetes. Indian Journal of Medical Research, 2007. 125(3): p. 389.
24.Alberts, A., et al., Regulation of synthesis of hepatic fatty acid synthetase: binding of fatty acid synthetase antibodies to polysomes. Proceedings of the National Academy of Sciences, 1975. 72(10): p. 3956-3960.
25.Wakil, S.J., J.K. Stoops, and V.C. Joshi, Fatty acid synthesis and its regulation. Annual review of biochemistry, 1983. 52(1): p. 537-579.
26.Kisseleva, A.F., et al., HMG CoA reductase and LDL receptor genes are regulated differently by 15-ketosterols in Hep G2 cells. Biochemical and biophysical research communications, 1999. 259(3): p. 688-694.
27.Jones, P.J., et al., Dietary cholesterol feeding suppresses human cholesterol synthesis measured by deuterium incorporation and urinary mevalonic acid levels. Arteriosclerosis, thrombosis, and vascular biology, 1996. 16(10): p. 1222-1228.
28.Rosser, D., et al., Coordinate regulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and prenyltransferase synthesis but not degradation in HepG2 cells. Journal of Biological Chemistry, 1989. 264(21): p. 12653-12656.
29.Goldstein, J.L. and M.S. Brown, Regulation of the mevalonate pathway. Nature, 1990. 343(6257): p. 425.
30.Horton, J., J. Goldstein, and M. Brown. SREBPs: transcriptional mediators of lipid homeostasis. in Cold Spring Harbor Symposia on Quantitative Biology. 2002. Cold Spring Harbor Laboratory Press.
31.Horton, J.D., J.L. Goldstein, and M.S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation, 2002. 109(9): p. 1125-1131.
32.Shimano, H., et al., Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. Journal of Clinical Investigation, 1997. 99(5): p. 846.
33.Yahagi, N., et al., Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance inLep ob/Lep ob mice. Journal of Biological Chemistry, 2002. 277(22): p. 19353-19357.
34.Engelking, L.J., et al., Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. The Journal of clinical investigation, 2004. 113(8): p. 1168-1175.
35.Briggs, M.R., et al., Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. Journal of Biological Chemistry, 1993. 268(19): p. 14490-14496.
36.Pande, S.V. and R. Parvin, Characterization of carnitine acylcarnitine translocase system of heart mitochondria. Journal of Biological Chemistry, 1976. 251(21): p. 6683-6691.
37.Britton, C.H., et al., Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proceedings of the National Academy of Sciences, 1995. 92(6): p. 1984-1988.
38.Aruoma, O.I., Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists'' Society, 1998. 75(2): p. 199-212.
39.Maritim, A., a. Sanders, and r.J. Watkins, Diabetes, oxidative stress, and antioxidants: a review. Journal of biochemical and molecular toxicology, 2003. 17(1): p. 24-38.
40.Halliwell, B., Free radicals and antioxidants: a personal view. Nutrition reviews, 1994. 52(8): p. 253-265.
41.Kirsch, M. and H. De Groot, NAD (P) H, a directly operating antioxidant? The FASEB Journal, 2001. 15(9): p. 1569-1574.
42.Forbes, J.M., M.T. Coughlan, and M.E. Cooper, Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008. 57(6): p. 1446-1454.
43.Uemura, S., et al., Diabetes mellitus enhances vascular matrix metalloproteinase activity role of oxidative stress. Circulation Research, 2001. 88(12): p. 1291-1298.
44.Evans, J.L., et al., Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine reviews, 2002. 23(5): p. 599-622.
45.Brownlee, M., The pathobiology of diabetic complications a unifying mechanism. Diabetes, 2005. 54(6): p. 1615-1625.
46.Chung, S.S., et al., Contribution of polyol pathway to diabetes-induced oxidative stress. Journal of the American Society of Nephrology, 2003. 14(suppl 3): p. S233-S236.
47.Goh, S.-Y. and M.E. Cooper, The role of advanced glycation end products in progression and complications of diabetes. The Journal of Clinical Endocrinology & Metabolism, 2008. 93(4): p. 1143-1152.
48.Derubertis, F.R. and P.A. Craven, Activation of protein kinase C in glomerular cells in diabetes: mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes, 1994. 43(1): p. 1-8.
49.Koya, D., et al., Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. Journal of Clinical Investigation, 1997. 100(1): p. 115.
50.Koya, D. and G.L. King, Protein kinase C activation and the development of diabetic complications. Diabetes, 1998. 47(6): p. 859-866.
51.Berg, J.M., J.L. Tymoczko, and L. Stryer, Each organ has a unique metabolic profile. 2002.
52.Mogensen, C., C. Christensen, and E. Vittinghus, The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes, 1983. 32(Supplement 2): p. 64-78.
53.Srinivasan, K. and P. Ramarao, Animal models in type 2 diabetes research: an overview. Indian Journal of Medical Research, 2007. 125(3): p. 451.
54.Zhang, F., et al., The rat model of type 2 diabetic mellitus and its glycometabolism characters. Experimental animals, 2003. 52(5): p. 401-407.
55.Like, A.A. and A.A. Rossini, Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science, 1976. 193(4251): p. 415-417.
56.Lenzen, S., The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia, 2008. 51(2): p. 216-226.
57.Szkudelski, T., The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological research, 2001. 50(6): p. 537-546.
58.Reed, M., et al., A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism, 2000. 49(11): p. 1390-1394.
59.Nakamura, T., et al., Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biological and Pharmaceutical Bulletin, 2006. 29(6): p. 1167-1174.
60.Kröncke, K.-D., et al., Nitric Oxide Generation during Cellular Metabolization of the Diabetogenic N-Mefhyl-N-Nitroso-Urea Streptozotozin Contributes to Islet Cell DNA Damage. Biological Chemistry Hoppe-Seyler, 1995. 376(3): p. 179-186.
61.Rodrigues, B., et al., Streptozotocin-induced diabetes: induction, mechanism (s), and dose dependency. Experimental models of diabetes, 1999: p. 3-17.
62.Morgan, N.G., et al., Treatment of cultured pancreatic B-cells with streptozotocin induces cell death by apoptosis. Bioscience reports, 1994. 14(5): p. 243-250.
63.Masiello, P., et al., Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Research communications in chemical pathology and pharmacology, 1990. 69(1): p. 17-32.
64.陳葦玲, et al., 龍鬚菜採後處理技術之改進. 臺中區農業改良場研究彙報, 2012(117): p. 11-23.
65.Wu, C.-H., et al., The polyphenol extract from Sechium edule shoots inhibits lipogenesis and stimulates lipolysis via activation of AMPK signals in HepG2 cells. Journal of agricultural and food chemistry, 2014. 62(3): p. 750-759.
66.Oliaro-Bosso, S., et al., Regulation of HMGCoA reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. Lipids, 2009. 44(10): p. 907-916.
67.Wellen, K.E. and G.S. Hotamisligil, Inflammation, stress, and diabetes. The Journal of clinical investigation, 2005. 115(5): p. 1111-1119.
68.Srinivasan, K., et al., Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacological research, 2005. 52(4): p. 313-320.
69.Peng, C.-H., et al., Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. Journal of agricultural and food chemistry, 2011. 59(18): p. 9901-9909.
70.Reeves, P.G., F.H. Nielsen, and G.C. Fahey Jr, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J nutr, 1993. 123(11): p. 1939-1951.
71.Lin, C.-L., H.-C. Huang, and J.-K. Lin, Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. Journal of lipid research, 2007. 48(11): p. 2334-2343.
72.Gong, H., Clinical methods: the history, physical, and laboratory examinations, 1990, Butterworth Publishers.
73.Tietz, N.W., Clinical guide to laboratory tests. 1995: WB Saunders Co.
74.Allain, C.C., et al., Enzymatic determination of total serum cholesterol. Clinical chemistry, 1974. 20(4): p. 470-475.
75.Creatin-Kinase, C., Recommendations of the German Society for Clinical Chemistry. 1970.
76.Marsh, W.H., B. Fingerhut, and H. Miller, Automated and manual direct methods for the determination of blood urea. Clinical chemistry, 1965. 11(6): p. 624-627.
77.Folch, J., M. Lees, and G. Sloane-Stanley, A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem, 1957. 226(1): p. 497-509.
78.Johansen, J.S., et al., Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovascular diabetology, 2005. 4(1): p. 1.
79.Hertog, M.G., et al., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet, 1993. 342(8878): p. 1007-1011.
80.Chen, C.-C., et al., Flavonoids inhibit tumor necrosis factor-α-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships. Molecular Pharmacology, 2004. 66(3): p. 683-693.
81.Yang, M.-Y., et al., Sechium edule Shoot Extracts and Active Components Improve Obesity and a Fatty Liver That Involved Reducing Hepatic Lipogenesis and Adipogenesis in High-Fat-Diet-Fed Rats. Journal of agricultural and food chemistry, 2015. 63(18): p. 4587-4596.
82.Zhang, M., et al., The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2009. 2008.
83.Luo, J., et al., Nongenetic mouse models of non—insulin-dependent diabetes mellitus. Metabolism, 1998. 47(6): p. 663-668.
84.Mu, J., et al., Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes, 2006. 55(6): p. 1695-1704.
85.Ning, J., et al., Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse. American Journal of Physiology-Endocrinology and Metabolism, 2011. 301(2): p. E391-E401.
86.Nannipieri, M., et al., Liver enzymes, the metabolic syndrome, and incident diabetes The Mexico city diabetes study. Diabetes care, 2005. 28(7): p. 1757-1762.
87.Hanley, A.J., et al., Elevations in markers of liver injury and risk of type 2 diabetes the insulin resistance atherosclerosis study. Diabetes, 2004. 53(10): p. 2623-2632.
88.郑晓珂, et al., 卷柏对 2 型糖尿病大鼠模型葡萄糖代谢影响的实验研究. 现代预防医学, 2009. 36(10): p. 1918-1922.
89.Chiang, D.J., M.T. Pritchard, and L.E. Nagy, Obesity, diabetes mellitus, and liver fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011. 300(5): p. G697-G702.
90.Li, Y., et al., AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell metabolism, 2011. 13(4): p. 376-388.
91.Tilg, H. and G.S. Hotamisligil, Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology, 2006. 131(3): p. 934-945.
92.Nonaka, S., et al., Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 1998. 95(6): p. 829-837.
93.Ueno, H., et al., KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor. Developmental cell, 2011. 20(1): p. 60-71.
94.Zhou, R., et al., KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell, 2009. 139(4): p. 802-813.
95.Gong, Y., et al., HNF-1β regulates transcription of the PKD modifier gene Kif12. Journal of the American Society of Nephrology, 2009. 20(1): p. 41-47.
96.Luco, R.F., et al., Targeted deficiency of the transcriptional activator Hnf1α alters subnuclear positioning of its genomic targets. PLoS Genet, 2008. 4(5): p. e1000079.
97.Yang, W., et al., Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells. Developmental cell, 2014. 31(2): p. 202-214.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊