|
1.Association, A.D., Standards of medical care for patients with diabetes mellitus. Puerto Rico Health Sciences Journal, 2013. 20(2). 2.Weyer, C., et al., The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. The Journal of clinical investigation, 1999. 104(6): p. 787-794. 3.Buchanan, T.A. and A.H. Xiang, Gestational diabetes mellitus. The Journal of clinical investigation, 2005. 115(3): p. 485-491. 4.Surwit, R.S., M.S. Schneider, and M.N. Feinglos, Stress and diabetes mellitus. Diabetes care, 1992. 15(10): p. 1413-1422. 5.Erejuwa, O.O., Management of diabetes mellitus: could simultaneous targeting of hyperglycemia and oxidative stress be a better panacea? International journal of molecular sciences, 2012. 13(3): p. 2965-2972. 6.Pessin, J.E. and A.R. Saltiel, Signaling pathways in insulin action: molecular targets of insulin resistance. The Journal of clinical investigation, 2000. 106(2): p. 165-169. 7.Alberiche, M., R.C. Bonadonna, and M. Muggeo, Prevalence of insulin resistance in metabolic disorders. Diabetes, 1998. 47: p. 1643. 8.Mooradian, A.D., Dyslipidemia in type 2 diabetes mellitus. Nature clinical practice Endocrinology & metabolism, 2009. 5(3): p. 150-159. 9.Goldberg, I.J., Diabetic dyslipidemia: causes and consequences. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(3): p. 965-971. 10.Cryer, P.E., S.N. Davis, and H. Shamoon, Hypoglycemia in diabetes. Diabetes care, 2003. 26(6): p. 1902-1912. 11.Kerl, M.E., Diabetic ketoacidosis: pathophysiology and clinical and laboratory presentation. Compendium, 2001. 23(3): p. 220-8. 12.Kitabchi, A.E., et al., Hyperglycemic crises in adult patients with diabetes a consensus statement from the American Diabetes Association. Diabetes care, 2006. 29(12): p. 2739-2748. 13.Kitabchi, A.E. and E.A. Nyenwe, Hyperglycemic crises in diabetes mellitus: diabetic ketoacidosis and hyperglycemic hyperosmolar state. Endocrinology and metabolism clinics of North America, 2006. 35(4): p. 725-751. 14.Laight, D.W., M.J. Carrier, and E.E. Änggård, Endothelial cell dysfunction and the pathogenesis of diabetic macroangiopathy. Diabetes/metabolism research and reviews, 1999. 15(4): p. 274-282. 15.Bernardi, S., et al., Cell-based therapies for diabetic complications. Experimental diabetes research, 2011. 2012. 16.Rudijanto, A., The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones, 2007. 39(2): p. 86-93. 17.Boulton, A.J., et al., Diabetic neuropathies a statement by the American Diabetes Association. Diabetes care, 2005. 28(4): p. 956-962. 18.DAVID, E.J. and M.F. Ohio JAMES, Evaluation and prevention of diabetic neuropathy. Am Fam Physician, 2005. 71(11): p. 2123-2128. 19.Ciulla, T.A., A.G. Amador, and B. Zinman, Diabetic retinopathy and diabetic macular edema pathophysiology, screening, and novel therapies. Diabetes care, 2003. 26(9): p. 2653-2664. 20.Gross, J.L., et al., Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes care, 2005. 28(1): p. 164-176. 21.Schena, F.P. and L. Gesualdo, Pathogenetic mechanisms of diabetic nephropathy. Journal of the American Society of Nephrology, 2005. 16(3 suppl 1): p. S30-S33. 22.Oakhill, J., J. Scott, and B. Kemp, Structure and function of AMP‐activated protein kinase. Acta physiologica, 2009. 196(1): p. 3-14. 23.Misra, P. and R. Chakrabarti, The role of AMP kinase in diabetes. Indian Journal of Medical Research, 2007. 125(3): p. 389. 24.Alberts, A., et al., Regulation of synthesis of hepatic fatty acid synthetase: binding of fatty acid synthetase antibodies to polysomes. Proceedings of the National Academy of Sciences, 1975. 72(10): p. 3956-3960. 25.Wakil, S.J., J.K. Stoops, and V.C. Joshi, Fatty acid synthesis and its regulation. Annual review of biochemistry, 1983. 52(1): p. 537-579. 26.Kisseleva, A.F., et al., HMG CoA reductase and LDL receptor genes are regulated differently by 15-ketosterols in Hep G2 cells. Biochemical and biophysical research communications, 1999. 259(3): p. 688-694. 27.Jones, P.J., et al., Dietary cholesterol feeding suppresses human cholesterol synthesis measured by deuterium incorporation and urinary mevalonic acid levels. Arteriosclerosis, thrombosis, and vascular biology, 1996. 16(10): p. 1222-1228. 28.Rosser, D., et al., Coordinate regulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and prenyltransferase synthesis but not degradation in HepG2 cells. Journal of Biological Chemistry, 1989. 264(21): p. 12653-12656. 29.Goldstein, J.L. and M.S. Brown, Regulation of the mevalonate pathway. Nature, 1990. 343(6257): p. 425. 30.Horton, J., J. Goldstein, and M. Brown. SREBPs: transcriptional mediators of lipid homeostasis. in Cold Spring Harbor Symposia on Quantitative Biology. 2002. Cold Spring Harbor Laboratory Press. 31.Horton, J.D., J.L. Goldstein, and M.S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation, 2002. 109(9): p. 1125-1131. 32.Shimano, H., et al., Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. Journal of Clinical Investigation, 1997. 99(5): p. 846. 33.Yahagi, N., et al., Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance inLep ob/Lep ob mice. Journal of Biological Chemistry, 2002. 277(22): p. 19353-19357. 34.Engelking, L.J., et al., Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. The Journal of clinical investigation, 2004. 113(8): p. 1168-1175. 35.Briggs, M.R., et al., Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. Journal of Biological Chemistry, 1993. 268(19): p. 14490-14496. 36.Pande, S.V. and R. Parvin, Characterization of carnitine acylcarnitine translocase system of heart mitochondria. Journal of Biological Chemistry, 1976. 251(21): p. 6683-6691. 37.Britton, C.H., et al., Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proceedings of the National Academy of Sciences, 1995. 92(6): p. 1984-1988. 38.Aruoma, O.I., Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists'' Society, 1998. 75(2): p. 199-212. 39.Maritim, A., a. Sanders, and r.J. Watkins, Diabetes, oxidative stress, and antioxidants: a review. Journal of biochemical and molecular toxicology, 2003. 17(1): p. 24-38. 40.Halliwell, B., Free radicals and antioxidants: a personal view. Nutrition reviews, 1994. 52(8): p. 253-265. 41.Kirsch, M. and H. De Groot, NAD (P) H, a directly operating antioxidant? The FASEB Journal, 2001. 15(9): p. 1569-1574. 42.Forbes, J.M., M.T. Coughlan, and M.E. Cooper, Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008. 57(6): p. 1446-1454. 43.Uemura, S., et al., Diabetes mellitus enhances vascular matrix metalloproteinase activity role of oxidative stress. Circulation Research, 2001. 88(12): p. 1291-1298. 44.Evans, J.L., et al., Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine reviews, 2002. 23(5): p. 599-622. 45.Brownlee, M., The pathobiology of diabetic complications a unifying mechanism. Diabetes, 2005. 54(6): p. 1615-1625. 46.Chung, S.S., et al., Contribution of polyol pathway to diabetes-induced oxidative stress. Journal of the American Society of Nephrology, 2003. 14(suppl 3): p. S233-S236. 47.Goh, S.-Y. and M.E. Cooper, The role of advanced glycation end products in progression and complications of diabetes. The Journal of Clinical Endocrinology & Metabolism, 2008. 93(4): p. 1143-1152. 48.Derubertis, F.R. and P.A. Craven, Activation of protein kinase C in glomerular cells in diabetes: mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes, 1994. 43(1): p. 1-8. 49.Koya, D., et al., Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. Journal of Clinical Investigation, 1997. 100(1): p. 115. 50.Koya, D. and G.L. King, Protein kinase C activation and the development of diabetic complications. Diabetes, 1998. 47(6): p. 859-866. 51.Berg, J.M., J.L. Tymoczko, and L. Stryer, Each organ has a unique metabolic profile. 2002. 52.Mogensen, C., C. Christensen, and E. Vittinghus, The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes, 1983. 32(Supplement 2): p. 64-78. 53.Srinivasan, K. and P. Ramarao, Animal models in type 2 diabetes research: an overview. Indian Journal of Medical Research, 2007. 125(3): p. 451. 54.Zhang, F., et al., The rat model of type 2 diabetic mellitus and its glycometabolism characters. Experimental animals, 2003. 52(5): p. 401-407. 55.Like, A.A. and A.A. Rossini, Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science, 1976. 193(4251): p. 415-417. 56.Lenzen, S., The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia, 2008. 51(2): p. 216-226. 57.Szkudelski, T., The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological research, 2001. 50(6): p. 537-546. 58.Reed, M., et al., A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism, 2000. 49(11): p. 1390-1394. 59.Nakamura, T., et al., Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biological and Pharmaceutical Bulletin, 2006. 29(6): p. 1167-1174. 60.Kröncke, K.-D., et al., Nitric Oxide Generation during Cellular Metabolization of the Diabetogenic N-Mefhyl-N-Nitroso-Urea Streptozotozin Contributes to Islet Cell DNA Damage. Biological Chemistry Hoppe-Seyler, 1995. 376(3): p. 179-186. 61.Rodrigues, B., et al., Streptozotocin-induced diabetes: induction, mechanism (s), and dose dependency. Experimental models of diabetes, 1999: p. 3-17. 62.Morgan, N.G., et al., Treatment of cultured pancreatic B-cells with streptozotocin induces cell death by apoptosis. Bioscience reports, 1994. 14(5): p. 243-250. 63.Masiello, P., et al., Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Research communications in chemical pathology and pharmacology, 1990. 69(1): p. 17-32. 64.陳葦玲, et al., 龍鬚菜採後處理技術之改進. 臺中區農業改良場研究彙報, 2012(117): p. 11-23. 65.Wu, C.-H., et al., The polyphenol extract from Sechium edule shoots inhibits lipogenesis and stimulates lipolysis via activation of AMPK signals in HepG2 cells. Journal of agricultural and food chemistry, 2014. 62(3): p. 750-759. 66.Oliaro-Bosso, S., et al., Regulation of HMGCoA reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. Lipids, 2009. 44(10): p. 907-916. 67.Wellen, K.E. and G.S. Hotamisligil, Inflammation, stress, and diabetes. The Journal of clinical investigation, 2005. 115(5): p. 1111-1119. 68.Srinivasan, K., et al., Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacological research, 2005. 52(4): p. 313-320. 69.Peng, C.-H., et al., Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. Journal of agricultural and food chemistry, 2011. 59(18): p. 9901-9909. 70.Reeves, P.G., F.H. Nielsen, and G.C. Fahey Jr, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J nutr, 1993. 123(11): p. 1939-1951. 71.Lin, C.-L., H.-C. Huang, and J.-K. Lin, Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. Journal of lipid research, 2007. 48(11): p. 2334-2343. 72.Gong, H., Clinical methods: the history, physical, and laboratory examinations, 1990, Butterworth Publishers. 73.Tietz, N.W., Clinical guide to laboratory tests. 1995: WB Saunders Co. 74.Allain, C.C., et al., Enzymatic determination of total serum cholesterol. Clinical chemistry, 1974. 20(4): p. 470-475. 75.Creatin-Kinase, C., Recommendations of the German Society for Clinical Chemistry. 1970. 76.Marsh, W.H., B. Fingerhut, and H. Miller, Automated and manual direct methods for the determination of blood urea. Clinical chemistry, 1965. 11(6): p. 624-627. 77.Folch, J., M. Lees, and G. Sloane-Stanley, A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem, 1957. 226(1): p. 497-509. 78.Johansen, J.S., et al., Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovascular diabetology, 2005. 4(1): p. 1. 79.Hertog, M.G., et al., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet, 1993. 342(8878): p. 1007-1011. 80.Chen, C.-C., et al., Flavonoids inhibit tumor necrosis factor-α-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships. Molecular Pharmacology, 2004. 66(3): p. 683-693. 81.Yang, M.-Y., et al., Sechium edule Shoot Extracts and Active Components Improve Obesity and a Fatty Liver That Involved Reducing Hepatic Lipogenesis and Adipogenesis in High-Fat-Diet-Fed Rats. Journal of agricultural and food chemistry, 2015. 63(18): p. 4587-4596. 82.Zhang, M., et al., The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2009. 2008. 83.Luo, J., et al., Nongenetic mouse models of non—insulin-dependent diabetes mellitus. Metabolism, 1998. 47(6): p. 663-668. 84.Mu, J., et al., Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes, 2006. 55(6): p. 1695-1704. 85.Ning, J., et al., Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse. American Journal of Physiology-Endocrinology and Metabolism, 2011. 301(2): p. E391-E401. 86.Nannipieri, M., et al., Liver enzymes, the metabolic syndrome, and incident diabetes The Mexico city diabetes study. Diabetes care, 2005. 28(7): p. 1757-1762. 87.Hanley, A.J., et al., Elevations in markers of liver injury and risk of type 2 diabetes the insulin resistance atherosclerosis study. Diabetes, 2004. 53(10): p. 2623-2632. 88.郑晓珂, et al., 卷柏对 2 型糖尿病大鼠模型葡萄糖代谢影响的实验研究. 现代预防医学, 2009. 36(10): p. 1918-1922. 89.Chiang, D.J., M.T. Pritchard, and L.E. Nagy, Obesity, diabetes mellitus, and liver fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011. 300(5): p. G697-G702. 90.Li, Y., et al., AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell metabolism, 2011. 13(4): p. 376-388. 91.Tilg, H. and G.S. Hotamisligil, Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology, 2006. 131(3): p. 934-945. 92.Nonaka, S., et al., Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 1998. 95(6): p. 829-837. 93.Ueno, H., et al., KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor. Developmental cell, 2011. 20(1): p. 60-71. 94.Zhou, R., et al., KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell, 2009. 139(4): p. 802-813. 95.Gong, Y., et al., HNF-1β regulates transcription of the PKD modifier gene Kif12. Journal of the American Society of Nephrology, 2009. 20(1): p. 41-47. 96.Luco, R.F., et al., Targeted deficiency of the transcriptional activator Hnf1α alters subnuclear positioning of its genomic targets. PLoS Genet, 2008. 4(5): p. e1000079. 97.Yang, W., et al., Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells. Developmental cell, 2014. 31(2): p. 202-214.
|