跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉凱傑
研究生(外文):Kai Jie Liu
論文名稱:電洞注入層及常壓電漿處理技術應用在有機發光二極體之研究
論文名稱(外文):Investigation of hole injection layer and atmospheric pressure plasma treatment for organic light-emitting diodes
指導教授:吳國梅
指導教授(外文):G. M. Wu
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:92
中文關鍵詞:有機發光二極體電洞注入層常壓電漿處理
外文關鍵詞:organic light-emitting diodeshole injection layeratmospheric pressure plasma treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
目錄
指導教授推薦書
口試委員會審定書
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 序論 1
1-1前言背景 1
1-2研究緣由與目的 4
1-3論文架構 5
第二章 文獻回顧與相關原理 6
2-1有機發光二極體的發展 6
2-2 小分子與高分子發光元件的區別 9
2-3有機二極體發光原理 11
2-4有機二極體結構 13
2-5螢光與磷光發光原理 19
2-6有機電激發光元件發光效率 23
2-7照明的單位 25
2-8文獻回顧 28
第三章 實驗架構與儀器 34
3-1實驗藥品 34
3-2實驗設備儀器 35
3-3實驗流程 36
3-4實驗步驟 37
3-4-1 玻璃(ITO glass)清洗 37
3-4-2 常壓電漿清洗機 39
3-4-3 熱蒸鍍製程 40
3-4-4 積分球量測 44
第四章 實驗結果與討論 46
4-1電洞注入層厚度探討 46
4-2 常壓電漿處理(200W)的探討 53
4-3常壓電漿處理不同功率的探討 59
4-4測量分析 64
第五章 結論 72
第六章 未來展望 73
參考文獻 74

圖目錄
圖2-1蔥(Anthracene) 6
圖2-2 雙層有機薄膜的元件 7
圖2-3 聚對苯乙烯PPV 8
圖2-4 OLED元件發光原理 12
圖2-5 OLED元件結構 14
圖2-6 OLED結構能階示意圖 15
圖2-7 螢光與磷光發光機制 20
圖2-8主客發光體間的能量傳遞機制 22
圖2-9 CIE色座標圖 27
圖2-10 HATCN不同厚度UPS光譜圖 29
圖2-11 HATCN厚度與功函數的變化 30
圖2-12電漿處理時間與功函數關係 31
圖2-13 ITO電漿處理UPS光譜圖 31
圖2-14 ITO電漿處理發光與電流密度圖 32
圖2-15 ITO電漿處理功率效率與電流密度圖 33
圖3-1 實驗流程示意圖 36
圖3-2 超音波震盪機 38
圖3-3 烘箱 39
圖3-4常壓電漿清洗機 40
圖3-5常壓電漿清洗示意圖 40
圖3-6熱蒸鍍機設備 42
圖3-7傳遞腔 42
圖3-8手套箱 43
圖3-9熱蒸鍍機腔內示意圖 43
圖3-10積分球量測設備 44
圖3-11積分球結構 45
圖4-1 各材料結構圖 48
圖4-2 不同HIL厚度綠光元件的結構 49
圖4-3不同HIL厚度的電流密度與電壓關係圖 50
圖4-4不同HIL厚度的發光功率效率與電流密度關係圖 51
圖4-5不同HIL厚度的發光效率與電流密度關係圖 51
圖4-6不同HIL厚度的發光亮度與電流密度關係圖 52
圖4-7 200W電漿處理綠光元件的結構 55
圖4-8電漿處理200W對不同HIL厚度的電流密度與電壓關係圖 56
圖4-9電漿處理200W對不同HIL厚度的發光功率效率與電流密度關係圖 56
圖4-10電漿處理200W對不同HIL厚度的發光效率與電流密度關係圖 57
圖4-11電漿處理200W對不同HIL厚度的發光亮度與電流密度關係圖 57
圖4-12不同電漿瓦數處理綠光元件的結構 60
圖4-13不同瓦數電漿處理的電流密度與電壓關係圖 61
圖4-14不同瓦數電漿處理的發光功率效率與電流密度關係圖 61
圖4-15不同瓦數電漿處理的發光效率與電流密度關係圖 62
圖4-16不同瓦數電漿處理的發光亮度與電流密度關係圖 62
圖4-17無電漿處理元件光譜圖 66
圖4-18 400W電漿處理元件光譜圖 66
圖4-19 無電漿處理元件光譜圖 67
圖4-20 400W電漿處理元件光譜圖 67
圖4-21 ITO表面AFM圖 69
圖4-22 ITO玻璃水滴量測圖 70

表目錄
表2-1 OLED與PLED比較 10
表2-2 光度學與放射學單位比較表 26
表2-3 Al/LiF元件特性 28
表3-1 ITO玻璃基板 37
表4-1材料能級特性 50
表4-2不同HIL厚度50 mA/cm2量測結果總整理 52
表4-3電漿200W不同HIL厚度50 mA/cm2量測結果總整理 58
表4-4有無電漿處理50 mA/cm2量測結果總整理 63
表4-5有無電漿處理100 mA/cm2量測結果總整理 63
表4-6有無電漿處理分析總整理 68
表4-7 ITO表面粗糙度總整理 70
表4-8水滴量測總整理 70
表4-9 長時間水滴量測分析 71

參考文獻
[1] 劉曜彰,曾美榕,“工研院電子報”,工業技術研究院,100年5月,第10005期。
[2] S. Reineke, F. Linderl, G. Schwartz, N. Seidler, K.Walzerl, B.Lusem and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature , 459, 234(2008).
[3] 陳金鑫,黃孝文,“OLED有機電激發光材料與元件”,五南書局,96年12月,p2-3。
[4] S. R. Forrest, P. E. Burrows, Z. Shen, G. Gu, V. Bulovic, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Synth. Met. 91, 9 (1997).
[5] A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80, 3853 (2002).
[6] Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids, ” Nat. Photon. 2, 483 (2008).
[7] C. T. Lee, Q. X. Yu, B. T. Tang, H. Y. Lee, “Effects of plasma treatment on the electrical and optical properties of indium tin oxide films fabricated by rf reactive sputtering,” Thin Solid Films, 386, 105(2001).
[8] C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348(1997).
[9] A. Wang, N. L. Edleman, J. R. Babcock, T. J. Marks, M. A. Lane, P. W. Nrazis, C. R. Kannewurf, “Metal-Organic Chemical Vapor Deposition of Zn-In-Sn-O and Ga-In-Sn-O Transparent Conducting Oxide Thin Films,” Mater. Res. Soc. Symp. Proc. 607, 345(2000).
[10] G. Destriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chem. Phys., 33, 587(1936).
[11] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys. 18, 2042(1963).
[12] C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913(1987).
[13] J. H.Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, 347, 539(1990).
[14] M. Era, C.Adachi, T. Tsutsui and S. Saito, “Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter,” Chem. Phys. Lett., 178, 488(1991).
[15] J. Kido, M. Kohda, K. Okuyama, K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers,” Appl. Phys. Lett., 61,761(1992).
[16] J. Kido, M. Kimura, K.Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science, 267, 1332(1995).
[17] M. StoBel, J. Staudigel, F. Steuber, J. Blassing, J.Simmerer, A. Winnacker, “Space-charge-limited electron currents in 8-hydroxyquinoline aluminum,” Appl. Phys. Lett., 76, 115, (2000).
[18] T. Ishida, H. Kobayashi and Y. Nakato, “Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by X‐ray photoelectron spectroscopy and work‐function measurements,” J. Appl. Phys., 73, 4344(1993).
[19] J. S. Kim, M. Granstrom, R. H.Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feat, F. Cacialli, “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance,” J.Appl. Phys., 84, 6859 (1998).
[20] S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, “Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices,” Appl. Phys. A., 86, (1999).
[21] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices,” J. Appl. Phys., 86, 1688 (1999).
[22] 陳金鑫,陳錦池,吳忠幟,“白光OLED照明”,五南書局,民國九十八年十月,p48。
[23] 施秉彝,“藍色與白色磷光有機發光二極體: 材料及元件的研究”,國立交通大學,博士論文,民國97年。
[24] S. Miyata, H. S. Nalwa, “Organic Electroluminescent Materials and Device, ” Gordon and Breach Science Publishers, Chap1(1997).
[25] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, “Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy,” J. Appl. Phys, 83, 4928(1998).
[26] X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai, S. He, “Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity,” Appl. Phys. Lett., 91, 221112(2007).
[27] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, “Excitonic singlet-triplet ratio in a semiconducting organic thin film,” Phys. Rev. B., 60, 14422(1999).
[28] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151(1998).
[29] L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett., 78, 544(2001).
[30] Hyeseung Kang, Ji-Hoon Kim, Jeong-Kyu Kim, Jaewon Seo, Yongsup Park, “Interface Electronic Structure of a Strongly Electron Withdrawing Molecule on an Indium-tin-oxide Surface,” J. Korean. Phys. Soc., 59, 3060(2011).
[31] Irfan Irfan , Sachiko Graber , Franky So , Yongli Gao, “Interplay of cleaning and de-doping in oxygen plasma treated high work function indium tin oxide (ITO),” Org. Electron., 13, 2028(2012).
[32] L.-S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks and D. L. Comfort, “Tandem Organic Light‐Emitting Diode using Hexaazatriphenylene Hexacarbonitrile in the Intermediate Connector,” Adv. Mater. 20, 324 (2008).
[33] Y.-K. Kim, J. W. Kim and Y. Park, “Energy level alignment at a charge generation interface between 4,4′-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Appl. Phys. Lett 94, 063305 (2009).
[34] S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R. L.Johnson, A. Vollmer, J. P. Rabe and N. Koch, “Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies,” Nat. Mater. 7, 326 (2008).
[35] H. Glowatzki, B. Broker, R.-P. Blum, O. T. Hofmann, A. Vollmer, R. Rieger, K. Mullen, E. Zojer, J. P. Rabe and N. Koch, “Soft Metallic Contact to Isolated C60 Molecules,” Nano Lett. 8, 3825 (2008).
[36] C. W. Tang , S. A. VanSlyke , and C. H. Chen , “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610 (1989).
[37] M. A. Baldo, D. F. O’Brien, Y. You, A. shoustikov, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151 (1998).
[38] Chang Hyun JEONG, June Hee LEE, Yong Hyuk LEE, Nam Gil CHO, Jong Tae LIM, Cheol Hee MOON and Geun Young YEOM, “Characteristics of Organic Light-Emitting Devices by the Surface Treatment of Indium Tin Oxide Surfaces Using Atmospheric Pressure Plasmas,” Jpn. J. Appl. Phys, 44, pp. L41–L44 (2005).
[39] Eun-Hye Kim, Chan-Woo Yang, Jin-Woo Park, “Improving the delamination resistance of indium tin oxide (ITO) coatings on polymeric substrates by O2 plasma surface treatment,” Curr. Appl. Phys. 10, S510–S514 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊