跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸虹惠
研究生(外文):Horng-Huey Luh
論文名稱:刪減區間及截斷資料下之無母數檢定的分佈
論文名稱(外文):The distribution of a non-parametric test for interval-censored and truncated failure time data
指導教授:黎進三黎進三引用關係
指導教授(外文):Chinsan Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:46
中文關鍵詞:刪減區間及截斷資料無母數檢定模擬Turnbull的演算法一致性
外文關鍵詞:Interval-censored and truncated failure time dataNon-parametric testSimulationTurnbull's algorithmSelf-consistency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於刪減區間及截斷資料下的一般無母數檢定,我們提出來判斷p個生命時間的母體是否來自相同的分佈。然而,無母數統計量的分佈並不容易用分析的方式求得,因此分析模擬是必要的。在這篇的論文中,我們提出一分析模擬的方法來估計在刪減區間及截斷資料情形下的生命時間分佈。並且舉一個Turnbull所提出的演算法為例子來解說我們的概念。而這方法的結果指出我們所提出的檢定是相當接近自由度p-1的卡方分佈乘上一常數。

In this paper, we discuss the distribution of a non-parametric test based on incomplete data for which the measurement of a survival time is known only to belong to an interval. Also the survival time of interest itself is observed from a truncated distribution and is known only to lie in an interval. The test is proposed in determining whether p lifetime populations come from the same distribution. To find the distribution of the test statistic we propose a simulation study. Simulation results indicate that the test is approximately (1/c) multiply chi-square distribution with p-1 degrees of freedom, where the constant c may depend on some factors.

1.Introduction 1
2.A self-consistent algorithm and the non-parametric test statistic 3
2.1.Turnbull's EM algorithm with censored and truncated data 3
2.2.A non-parametric test for the comparison of failure time distributions with interval-censored and truncated data 8
3.A simulation study 12
3.1.An urn model for determining p 12
3.2.Simulation 21
4.The distribution of the non-parametric test statistic 24
5.Reference 45

1.Chinsan, Lee. (1999): Urn Model in the Simulation of Interval Censored Failure Time Data. To appear in Statistics & Probability Letters.
2.Chang, M.N. and Yang, G.L. (1987): Strong consistency of a nonparametric estimator of the survival function with doubly censored data. Annals of Statistics. Vol. 16, 1536-1547.
3.De Gruttola, V. and Lagakos, S. (1989): Analysis of doubly-censored survival data, with application to AIDS. Biometrics. Vol. 45, 1-11.
4.Finkelstein, D.M. (1986): A proportional hazard model for interval-censored failure time data. Biometrics. Vol. 42, 845-854.
5.Gomez, G. and Lagakos, S.W. (1994): Estimation of the Infection Time and Latency Distribution of AIDS with Doubly Censored Data. Biometrics. Vol. 50, 204-212.
6.Lawless, J. F. (1982): Statistical Models and Methods for lifetime Data. Wiley, New York.
7.Sun, J.(1995): Empirical Estimation of a Distribution Function with Truncated and Doubly Interval-Censored Data and Its Application to AIDS Studies. Biometrics. Vol. 51, 1096-1104.
8.Sun, J. (1996): A non-parametric test for interval-censored failure time data with application to AIDS studies. Statistics
in Medicine. Vol. 15, 1387-1395.
9.Turnbull, B.W. (1974): Nonparametric estimation of a surviorship function with doubly censored data. J. Amer. Statist. Ass. Vol. 69, 169-173.
10.Turnbull, B.W. (1976): The empirical distribution function with arbitrarily grouped, censored, and truncated data. J. of the Royal statistical Society, Series B. Vol. 38, 290-295.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top