跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耀文
研究生(外文):Yao-Wen Chang
論文名稱:大白鼠乳腺在休止、懷孕、泌乳及離乳時期,CD200之分佈
論文名稱(外文):CD200 Distribution in Rat Mammary Glands during Resting, Pregnancy, Lactation and Involution
指導教授:王順德吳慶祥
指導教授(外文):Shwun-De WangChing-Hsiang Wu
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物及解剖學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:103
中文關鍵詞:大白鼠乳腺肌上皮細胞
外文關鍵詞:CD200Rat Mammary GlandMyoepithelial cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
摘要
截至目前為止的研究,我們已經證明在大白鼠乳腺肌上皮細胞上有類似CD200的表現,且不同生理狀況下的乳腺可產生不同的賀爾蒙去影響管腔上皮細胞變化,肌上皮細胞則隨著上皮細胞之變化而改變。的確,我們目前的研究已進一步發現在大白鼠乳腺休止、懷孕、泌乳及離乳四個生理時期,其乳腺肌上皮細胞的CD200均會有不同表現。於大白鼠乳腺休止期,CD200會分佈在肌上皮細胞的整個細胞膜上。但在懷孕期,CD200的分佈卻有所改變,此時CD200僅表現在肌上皮細胞靠近基底膜側的細胞膜上;靠近上皮細胞側細胞膜上的CD200卻消失。進入泌乳期,CD200在肌上皮細胞細胞膜上兩側的表現剛好和懷孕期的表現相反。有趣的是,離乳期的乳腺上,肌上皮細胞會包被正在退化萎縮的腺泡,且其靠近基底膜側細胞膜上的CD200免疫反應是中等程度且連續的分佈;然而靠近已經退化上皮細胞那側的細胞膜,CD200呈現較為強烈且偶發性的免疫反應。進一歩研究乳腺肌上皮細胞CD200在離乳期不同時間點的變化,證據顯示肌上皮細胞CD200的表現明顯增加。隨著乳腺退化的進行,肌上皮細胞會將其含有愈多明顯凸出物的突起縮回。在大白鼠乳腺離乳晚期,其管道及腺泡均退化至類似乳腺休止時期之結構,此時,強烈的CD200免疫反應不僅出現在肌上皮細胞上,同時亦出現在部分的上皮細胞上。而青春期五週大之大白鼠乳腺上皮細胞也被證實有明顯CD200的免疫反應,強烈的CD200免疫反應表現在五週大大白鼠乳腺大部分但非全部的上皮細胞之細胞膜及其頂端修飾物結構上。有趣的是,構成末端盲管芽最外層的帽細胞,卻一直沒有CD200的免疫反應。同樣的現象亦發生在大白鼠乳腺懷孕、泌乳及離乳期的上皮細胞中。本實驗結果指出,由於賀爾蒙環境的刺激造成乳腺上皮細胞有不同的生理狀態,乳腺肌上皮細胞可能會隨著上皮細胞不同的生理狀況而有所改變,同時,乳腺的生長可能會透過CD200黏著分子。
Abstract
In the present study, we demonstrated a similar CD200 expression in the myoepithelial cells of the mammary glands. Myoepithelial cells were well known to be altered morphologically under different hormonal conditions in a physiologic state correlative to the luminal epithelial cells. Indeed, our present study further showed a differential expression of myoepithelial CD200 in the rat mammary gland during resting, pregnancy, lactation and involution. CD200 is distributed at entire cytoplasmic membrane of myoepithelial cells in the virgin mammary gland. This expression is altered when rats are in pregnancy and myoepithelial CD200 is expressed only on the cytoplasmic membrane facing the basal lamina and absent on that facing the epithelium. The polarity of CD200 expression on myoepithelial cells is reversed during lactation. Interestingly, myoepithelial cells investing regressing alveoli of involuted glands showed a moderate but continuous CD200 immunoreactivity on the cytoplasmic membrane facing the basal lamina. Opposite degenerated epithelial cells, the immunoreactivity on the membrane is however intense but sporadic. Extended study on chronological changes of myoepithelial CD200 in the involuted glands showed an increased CD200 expression on myoepithelia that retracted their processes bearing more obvious protrusions with advance of the involution. At the final phase of mammary involution when the ducts and alveoli regressed towards a resting state, intense CD200 immunoreactivity was found at not only myoepithelia but some epithelial cells. The remarkable expression of epithelial CD200 was also evidenced in the mammary glands of 5-week-old pubertal rats that showed intense immunoreactivity on the cytoplasmic membrane including its apical modifications of major but not all epithelial cells. Interestingly, the outermost layer made up by cap cells of the terminal end buds has nerve possessed CD200. It is also true for epithelial cells of mammary glands during pregnancy, lactation and involution. These results indicated that myoepithelial cells of the mammary glands may be changed and related to the physiologic state of the epithelial cells by hormonal environments synchronizing the gland growth through in part CD200 adhesion molecules.
目錄 頁次
目錄.................................................................I
圖目錄..............................................................IV
附圖目錄............................................................VI
中文摘要...........................................................VII
英文摘要............................................................IX
第一章 緒論...........................................................1
第一節 CD200.......................................................1
壹、CD200的起源...................................................1
貳、CD200之相關研究...............................................2
第二節 大白鼠乳腺構造................................................4
壹、大體解剖構造 (Gross anatomy)..................................4
貳、顯微解剖構造 (Microscopic anatomy)............................5
第二章 研究目的......................................................20
第三章 材料與方法....................................................21
第一節 實驗材料....................................................21
壹、實驗動物.....................................................21
貳、實驗藥品.....................................................21
參、免疫組織化學染色抗體..........................................21
肆、免疫螢光染色抗體..............................................21
伍、其他化學試劑.................................................22
陸、儀器設備....................................................23
第二節 實驗設計與研究方法...........................................23
壹、實驗設計、動物犧牲與標本組織取得................................23
貳、冷凍切片之標本備製與切片.......................................26
參、免疫組織化學染色..............................................27
肆、免疫組織化學染色之對比染色及脫水................................28
伍、免疫螢光染色.................................................28
陸、免疫螢光染色之對比染色及脫水...................................29
柒、電子顯微鏡切片之標本備製與切片..................................29
第四章 結果..........................................................31
第一節 運用CD200免疫組織化學染色法,探討CD200在大白鼠乳腺休止、懷孕、泌乳
及離乳四個生理時期之分佈......................................31
壹、光學顯微鏡觀察大白鼠乳腺在休止、懷孕、泌乳及離乳時期,CD200之分佈..31
貳、電子顯微鏡觀察大白鼠乳腺在休止、懷孕、泌乳及離乳時期,CD200之分佈..33
第二節 運用CD200免疫組織化學染色法,進一步探討大白鼠乳腺離乳期,CD200在乳
腺肌上皮細胞之分佈............................................35
壹、離乳二天的大白鼠乳腺上CD200之分佈..............................35
貳、離乳四天的大白鼠乳腺上CD200之分佈..............................36
參、離乳十四天的大白鼠乳腺上CD200之分佈.............................37
肆、離乳二十一天的大白鼠乳腺上CD200之分佈...........................37
第三節 運用CD200免疫組織化學染色法,進一步探討五週大大白鼠乳腺休止期,CD200
於乳腺末端盲管芽、小泡芽及終末導管之分佈........................38
壹、光學顯微鏡觀察五週大的大白鼠乳腺休止期CD200之分佈................39
貳、共軛焦顯微鏡觀察五週大的大白鼠乳腺休止期CD200之分佈...............40
第五章 討論..........................................................42
第一節 乳腺肌上皮細胞CD200之顯著變化,除可反應出肌上皮細胞形態上的改變外,
亦代表其不同的功能(生理)階段...................................42
第二節 乳腺肌上皮細胞與腺體上皮細胞的前軀細胞均可被CD200標示上,且二者可透
過CD200間同質性黏著的結合方式,來達成細胞與細胞間的交互作用.......46
第三節 CD200是已分化的乳腺腺體組織當中肌上皮細胞的專一標誌..............47
第四節 大白鼠乳腺離乳期CD200所扮演的角色..............................47
壹、大白鼠乳腺離乳期是一種免疫反應的表現............................47
貳、CD200為一種免疫抑制分子,其接受體存在於巨噬細胞表面...............50
參、大白鼠乳腺離乳期,肌上皮細胞不被巨噬細胞吞噬,亦不會引發更嚴重的自體
免疫反應.....................................................52
第六章 結論..........................................................54
參考文獻...........................................................93

圖目錄 頁次
圖一、光學顯微鏡觀察成熟(八週大)大白鼠乳腺休止期CD200免疫組織化學染色之表現.56
圖二、光學顯微鏡觀察大白鼠乳腺懷孕期CD200免疫組織化學染色之表現............58
圖三、光學顯微鏡觀察大白鼠乳腺泌乳期CD200免疫組織化學染色之表現............60
圖四、光學顯微鏡觀察離乳七天的大白鼠乳腺上CD200免疫組織化學染色之表現......62
圖五、電子顯微鏡觀察成熟(八週大)大白鼠乳腺休止期CD200免疫組織化學染色之表現.64
圖六、電子顯微鏡觀察大白鼠乳腺懷孕期CD200免疫組織化學染色之表現............66
圖七、電子顯微鏡觀察大白鼠乳腺泌乳期CD200免疫組織化學染色之表現............68
圖八、電子顯微鏡觀察離乳七天的大白鼠乳腺上CD200免疫組織化學染色之表現......70
圖九、光學顯微鏡觀察離乳二天的大白鼠乳腺上CD200免疫組織化學染色之表現......72
圖十、光學顯微鏡觀察離乳四天的大白鼠乳腺上CD200免疫組織化學染色之表現......74
圖十一、光學顯微鏡觀察離乳十四天的大白鼠乳腺上CD200免疫組織化學染色之表現...76
圖十二、光學顯微鏡觀察離乳二十一天的大白鼠乳腺上CD200免疫組織化學染色之表現.78
圖十三、光學顯微鏡觀察五週大之大白鼠乳腺休止期CD200免疫組織化學染色之表現...80
圖十四、光學顯微鏡觀察五週大之大白鼠乳腺休止期,CD200在末端盲管芽、小泡芽及
終末導管免疫組織化學染色之表現..................................82
圖十五、共軛焦顯微鏡觀察五週大之大白鼠乳腺休止期,CD200在末端盲管芽、小泡芽
及終末導管免疫組織化學染色之表現................................84
圖十六、大白鼠乳腺在休止、懷孕、泌乳及離乳時期,CD200分佈在肌上皮細胞之模式
圖...........................................................86

附圖目錄 頁次
附圖一、雌性小鼠乳腺分佈圖.............................................88
附圖二、末端盲管芽和小泡芽之構造模式圖..................................88
附圖三、56天大雌性大白鼠其乳腺休止期第四對乳腺之模式圖....................90
附圖四、活躍期之乳腺構造..............................................90
附圖五、大白鼠乳腺不同生理階段之肌上皮細胞利用免疫組織化學染色法觀察之模式圖.92
參考文獻
1. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63-71, 1994.
2. Alvarado MV, Russo J, Russo IH: Immunolocalization of inhibin in the mammary gland of rats treated with hCG.J Histochem Cytochem 41:29-34,1993.
3. Anderson JC: The increased resistance of mice to experimental staphylococcal mastitis following inoculation of endotoxin. Res Vet Sci 21:64-8, 1976.
4. Andres AC, Strange R: Apoptosis in the estrous and menstrual cycles. J Mammary Gland Biol Neoplasia 4:221-8, 1999.
5. Asch HL, Asch BB: Expression of keratins and other cytoskeletal proteins in mouse mammary epithelium during the normal developmental cycle and primary culture. Dev Biol 107:470-82, 1985.
6. Arts CJ, Glovers CA, van Den Berg H, Thijssen JH: Effect of wheat bran and energy restriction on onset of puberty, cell proliferation and development of mammary tissue in female rats. Acta Endocrinol 126:451-459, 1992.
7. Barclay AN, Wright GJ, Brooke G, Brown MH: CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23:285-90, 2002.
8. Barclay L, Neill J: An integrated biophysical science curriculum: design and development. Aust J Adv Nurs 4(2):29-38, 1986.
9. Beutler B, Cerami A: Cachectin/tumor necrosis factor: an endogenous mediator of shock and inflammation. Immunol Res 5:281-93, 1986.
10. Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD: Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 161:1669-77, 2002.
11. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ: Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13:2604-16, 1999.
12. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ: Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 6:R92-109, 2004.
13. Colditz IG: Studies on the inflammatory response during involution of the ovine mammary gland. Q J Exp Physiol 73:363-8, 1988.
14. Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA: The importance of being a myoepithelial cell. Breast Cancer Res 4:224-30, 2002.
15. Dinarello CA: Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 311:1413-8, 1984.
16. Dulbecco R, Allen WR, Bologna M, Bowman M: Marker evolution during the development of the rat mammary gland: stem cells identified by markers and the role of myoepithelial cells. Cancer Res 46:2449-56, 1986.
17. Daniel CW, Silberstein GB: Postnatal development of the rodent mammary gland. In: The mammary gland (Neville MC, Daniel CW, eds). New York: Plenum Press, 1987;3-36.
18. Eckersall PD: Recent advances and future prospects for the use of acute phase proteins as markers of disease in animals. Revue Méd Vét 151:577-584, 2000.
19. Furth PA: Introduction: mammary gland involution and apoptosis of mammary epithelial cells. J Mammary Gland Biol Neoplasia 4:123-7, 1999.
20. Fadok VA: Clearance: The last and often forgotten stage of apoptosis. J Mammary Gland Biol. Neoplasia 4:203–211, 1999.
21. Gorczynski RM: CD200 and its receptors as targets for immunoregulation. Curr Opin Investig Drugs 6:483-8, 2005.
22. Gorczynski RM, Cattral MS, Chen Z, Hu J, Lei J, Min WP, Yu G, Ni J: An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol 163:1654-60, 1999.
23. Gouon-Evans V, Rothenberg ME, Pollard JW: Postnatal mammary gland development requires macrophages and eosinophils. Development 127:2269-82, 2000.
24. Ghadially FN. Diagnostic electron microscopy of tumors. London: Butterworth and Company, 1985.
25. Gusterson BA, Warburton MJ, Monaghan P. Histologic/immunocytochemical markers, mammary gland, rat. In: Integument and mammary glands (Jones TC, Mohr U, Hunt RD, eds). Berlin:Springer Verlag, 1989; 266-274.
26. Hbabi-Haddioui L, Roques C: Inhibition of Streptococcus pneumoniae adhesion by specific salivary IgA after oral immunisation with a ribosomal immunostimulant. Drugs 54 Suppl 1:29-32, 1997.
27. Heinrich PC, Castell JV, Andus T: Interleukin-6 and the acute phase response. Biochem J 265:621-36, 1990.
28. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD: Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768-71, 2000.
29. Hu ZA, Tan YL, Luo J, Li HD, Li XC, Yu ZP: [Changes in neural cell adhesion molecule mRNA expression and protein level in the CA1 region of the hippocampus during long term potentiation induction and maintenance]. Sheng Li Xue Bao 56:89-94, 2004.
30. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD: Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025-33, 1990.
31. Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L: Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 143:3641-50, 2002.
32. Humphreys RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S, Reed JC, Rosen JM: Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 122:4013-22, 1996.
33. Hwang JJ, Lee AB, Fields PA, Haab LM, Mojonnier LE, Sherwood OD: Monoclonal antibodies specific for rat relaxin. V. Passive immunization with monoclonal antibodies throughout the second half of pregnancy disrupts development of the mammary apparatus and, hence, lactational performance in rats. Endocrinology 129:3034-42, 1991.
34. Humphries RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajweski S, Reed JC, Rosen JM: Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122:4013–4022, 1996.
35. Jahn GA, Edery M, Belair L, Kelly PA, Djiane J: Prolactin receptor gene expression in rat mammary gland and liver during pregnancy and lactation. Endocrinology 128:2976-84, 1991.
36. Janeway CA Jr, Golstein P: Lymphocyte activation and effector functions. Editorial overview. The role of cell surface molecules. Curr Opin Immunol. 5:313-23, 1993.
37. Jin HS, Umemura S, Iwasaka T, Osamura RY: Alterations of myoepithelial cells in the rat mammary gland during pregnancy, lactation and involution, and after estradiol treatment. Pathol Int 50:384-91, 2000.
38. King MM, McCoy P, Russo IH. Dietary fat may influence DMBA-initiated mammary gland carcinogenesis by modification of mammary gland development. In: Current topics in nutrition and disease (Roe, Daphne A ed). New York:Alan R. Liss, 1983;61-90.
39. Lee CS, McCauley I, Hartmann PE: Light and electron microscopy of cells in pig colostrum, milk and involution secretion. Acta Anat (Basel) 116:126-35, 1983.
40. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, Hennighausen L, Furth PA: Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A 94:3425-30, 1997.
41. Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z: Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122:181-93, 1996.
42. Marti A, Lazar H, Ritter P, Jaggi R: Transcription factor activities and gene expression during mouse mammary gland involution. J Mammary Gland Biol Neoplasia 4:145-52, 1999.
43. Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J: Effects of estrogen and progesterone on the development of the mammary gland and the associated blood vessels in ovariectomized mice. J Vet Med Sci 54:1117-24, 1992.
44. Monks J, Geske FJ, Lehman L, Fadok VA: Do inflammatory cells participate in mammary gland involution? J Mammary Gland Biol Neoplasia 7:163-76, 2002.
45. Neville MC, Medina D, Monks J, Hovey RC: The mammary fat pad. J Mammary Gland Biol Neoplasia 3:109-16, 1998.
46. Nickerson SC: Immunological aspects of mammary involution. J Dairy Sci 72:1665-78, 1989.
47. Nordin W, Lee CS: Cytology of milk in guinea pigs. Acta Anat (Basel) 113:135-44, 1982.
48. Ormerod EJ, Rudland PS: Cellular composition and organization of ductal buds in developing rat mammary glands: evidence for morphological intermediates between epithelial and myoepithelial cells. Am J Anat 170:631-52, 1984.
49. Preston S, Wright GJ, Starr K, Barclay AN, Brown MH: The leukocyte/neuron cell surface antigen OX2 binds to a ligand on macrophages. Eur J Immunol 27:1911-8, 1997.
50. Pike MC, Spicer DV, Dahmoush L, Press MF: Estrogens, progestogens, normal breast cell proliferation, and breast cancer. Epidemiol Rev 15:17-35, 1993.
51. Peluso JJ. Morphologic and physiologic features of the ovary. In: Pathobiology of the aging rat (Mohr U, Dungworth DL, Capen CC, eds). Washington, DC:ILSI Press, 1992;337-349.
52. Quarrie LH, Addey CV, Wilde CJ: Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling. Cell Tissue Res 281:413-9, 1995.
53. Quarrie LH, Addey CV, Wilde CJ: Programmed cell death during mammary tissue involution induced by weaning, litter removal, and milk stasis. J Cell Physiol 168:559-69, 1996.
54. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM: An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5:227-41, 2000.
55. Rosenblum MD, Olasz E, Woodliff JE, Johnson BD, Konkol MC, Gerber KA, Orentas RJ, Sandford G, Truitt RL: CD200 is a novel p53-target gene involved in apoptosis-associated immune tolerance. Blood 103:2691-8, 2004.
56. Rosenblum MD, Olasz EB, Yancey KB, Woodliff JE, Lazarova Z, Gerber KA, Truitt RL: Expression of CD200 on epithelial cells of the murine hair follicle: a role in tissue-specific immune tolerance? J Invest Dermatol 123:880-7, 2004.
57. Russo J: Basis of cellular autonomy in susceptibility to carcinogenesis: Toxicol Pathol. 11:149-163, 1983.
58. Russo IH, Russo J: Hormone prevention of mammary carcinogenesis: a new approach in anticancer research. Anticancer Res 8:1247-64, 1988.
59. Russo IH, Medado J, Russo J. Endocrine influences on mammary structure and development. In: Integument and mammary gland of laboratory animals (Jones TC, Mohr U, Hunt RD, eds). Berlin:Springer Verlag, 1989;252-266.
60. Russo IH, Tewari M, Russo J. Morphology and development of rat mammary gland. In: Integument and mammary gland of laboratory animals (Jones TC, Mohr U, Hunt RD, eds). Berlin:Springer-Verlag, 1989;233-252.
61. Russo IH, Russo J: Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104:938-67, 1996.
62. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ: Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244-78, 1990.
63. Russo J, Russo IH: Biological and molecular bases of mammary carcinogenesis. Lab Invest 57:112-37, 1987.
64. Russo J, Russo IH: Toward a physiological approach to breast cancer prevention. Cancer Epidemiol Biomarkers Prev 3:353-64, 1994.
65. Russo J, Tay LK, Russo IH: Differentiation of the mammary gland and usceptibility to carcinogenesis. Breast Cancer Res Treat 2:5-73, 1982.
66. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, Hynes RO: Precocious mammary gland development inp-cadherindeficient mice. J Cell Biol 139:1025–1032, 1997.
67. Sakakura T. Mammary embryogenesis. In: The mammary gland (Neville MC, Daniel CW, eds). New York:Plenum Press, 1987;37-66.
68. Silberstein GB, Flanders KC, Roberts AB, Daniel CW: Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev Biol 152:354-62, 1992.
69. Silberstein GB, Van Horn K, Shyamala G, Daniel CW: Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 134:84-90, 1994.
70. Steele GD, Jr., Osteen RT, Winchester DP, Murphy GP, Menck HR: Clinical highlights from the National Cancer Data Base: 1994. CA Cancer J Clin 44:71-80, 1994.
71. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, Bell AK, Ferrier RK, Sandilands GP, Gusterson BA: Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 6:R75-91, 2004.
72. Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A: In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci 23:2255-64, 2006.
73. Strange R, Li F, Saurer S, Burkhardt A, Friis RR: Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115:49-58, 1992.
74. Streuli C, Bissell M: Expression of extracellular matrix components is regulated by substratum. J Cell Biol 110:1405–1415, 1990.
75. Talhouk RS, Bissell MJ, Werb Z: Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol 118:1271-82, 1992.
76. Topper YJ, Freeman CS: Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60:1049-106, 1980.
77. Williams EJ, Williams G, Gour B, Blaschuk O, Doherty P: A novel N-cadherin antagonist targeted to the amino acids that flank the HAV motif. Mol Cell Neurosci. 15:456-64, 2000.
78. Walker NI, Bennett RE, Kerr JF: Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat 185:19-32, 1989.
79. Warburton MJ, Mitchell D, Ormerod EJ, Rudland P: Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J Histochem Cytochem 30:667-76, 1982.
80. Wiehle RD, Wittliff JL: Alterations in sex-steroid hormone receptors during mammary gland differentiation in the rat. Comp Biochem Physiol B 76:409-17, 1983.
81. Wilde CJ, Knight CH, Flint DJ: Control of milk secretion and apoptosis during mammary involution. J Mammary Gland Biol Neoplasia 4:129-36, 1999.
82. Williams JM, Daniel CW: Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 97:274-90, 1983.
83. Webb M, Barclay AN: Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones. J Neurochem 43:1061-7, 1984.
84. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, Song Y, Jenmalm M, Gorman D, McClanahan T, Liu MR, Brown MH, Sedgwick JD, Phillips JH, Barclay AN: Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171:3034-46, 2003.
85. Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN: The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102:173-9, 2001.
86. Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, Barclay AN: Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13:233-42, 2000.
87. Yung SY: Inhibins, activins and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocrine Rev 9:267-293, 1988.
88. Zhang S, Cherwinski H, Sedgwick JD, Phillip JH: Molecular mechanisms of CD200 inhibition of mast cell activation. J Immunol 173:6786-93, 2004.
89. Zhong Z, Wen Z, Darnell JE, Jr.: Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95-8, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王曉璿(1999)。資訊科技融入各科教學探究。菁莪季刊,10(4)。18-24。
2. 王裕德、黃忠志(2001)。資訊科技融入教學之探討----以生活科技之室內設計為例。生活科技教育,34(7),29-34。
3. 尹玫君(2000)。國民小學老師的網路教學素養與培育。資訊與教育雜誌,79,13-19。
4. 王全世(2000)。對資訊科技融入各科教學之資訊情境的評估標準。資訊與教育雜誌,77,36-47。
5. 王全世(2001)。資訊科技融入教學之意義與內涵。資訊與教育雜誌,80,23-31。
6. 何榮桂(2001)。他山之石可以攻錯—亞太地區(臺、港、新、日、韓)資訊教育的發展與前瞻。資訊與教育雜誌,81,1-6。
7. 何榮桂(2002)。台灣資訊教育的現況與發展--兼論資訊科技融入教學。資訊與教育雜誌,87,22-48。
8. 何榮桂、顏永進(2001)。資訊融入健康與體育領域教學。教師天地,112,71-77。
9. 汪琪(1997)。虛擬教育。教學科技與媒體,34,47-50。
10. 邱瓊慧(2002)。中小學資訊科技融入教學之實踐。資訊與教育雜誌,88,3-9。
11. 張國恩(1999)。資訊科技融入教學之內涵與實施。資訊與教育雜誌,72,2-9。
12. 張國恩(2002)。從學習科技的發展看資訊科技融入教學之內涵。北縣教育,41,16-25。
13. 張清濱(1991)。學校效能與教育評鑑。師友月刊,291,1-4。
14. 許天威、吳訓生(2000)。我國資優教育實施現況與發展方向之研究。特殊教育學報,14,93-124
15. 彭富源(2001)。資訊科技融入各科教學的困境與因應。研習資訊,18(3),40-48。