跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭方茹
研究生(外文):Fang-Ju Cheng
論文名稱:二十二碳六烯酸對表皮生長因子誘發SK-BR3人類乳腺癌細胞尿激酶型血纖維蛋白溶解酶原活化因子及基質金屬蛋白酶-1/-9表現機制之探討
論文名稱(外文):Effect of docosahexaenoic acid on EGF-induced urokinase plasminogen activator and matrix metalloproteinase-1/-9 expression in SK-BR3 human breast cancer cells
指導教授:李健群李健群引用關係
指導教授(外文):Chien-Chun Li
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳癌為全球女性最常見的惡性腫瘤,癌細胞轉移是導致乳癌患者死亡的主要原因。臨床研究發現乳癌病人中約有20~30%具有致癌基因ErbB2的過度表現,其臨床預後差且存活率低。先前研究證實,乳癌細胞發生轉移與否和尿激酶型血纖維蛋白溶解酶原活化因子(Urokinase plasminogen activator, uPA)及基質金屬蛋白酶(Matrix metalloproteinases; MMPs)蛋白質表現與活性的增加有關。另有研究證實EGF可透過活化EGFR/ErbB2,正向調控ErbB2過度表現型SK-BR3人類乳腺癌細胞uPA、MMP-1和MMP-9表現。許多文獻指出,增加二十二碳六烯酸(docosahexaenoic acid, DHA; 22:6n-3)攝取可降低乳癌發生率並改善乳癌預後。雖有不少研究證實DHA具有抑制乳癌細胞轉移能力,但對於抑制SK-BR3乳癌細胞轉移機制仍不清楚。本研究以SK-BR3乳癌細胞為實驗模式,探討DHA對EGF誘發SK-BR3乳癌細胞之EGFR及ErbB2磷酸化與蛋白質表現,及其下游相關訊號路徑所調控uPA、MMP-1及MMP-9酵素活性與蛋白質表現之影響。實驗結果顯示,隨著EGF處理濃度與時間增加,顯著誘發uPA、MMP-1及MMP-9之酵素活性與蛋白質表現,處理DHA (100 μM)可負向調控EGF (40 ng/ml)所誘發uPA、MMP-1及MMP-9之酵素活性與蛋白質表現。DHA可顯著抑制EGF所誘發ERK1/2、JNK、Akt (Ser473)磷酸化,而且細胞預處理EGFR磷酸化抑制劑AG1478也可顯著降低EGF所誘發ERK1/2、JNK、(Ser473)磷酸化。此外,以EGF處理SK-BR3乳癌細胞15分鐘後,即顯著誘發EGFR及ErbB2磷酸化;而EGFR及ErbB2蛋白質表現量亦會隨EGF處理時間增加而增加。一旦加入DHA則可抑制EGF短時間所誘發EGFR及ErbB2磷酸化並降低EGF長時間所誘發EGFR及ErbB2蛋白質表現。免疫螢光染色法與共同免疫沉澱分析法結果顯示,DHA可顯著降低EGF所誘發SK-BR3細胞EGFR與ErbB2蛋白結合並減少胞內分佈。綜合上述結果,DHA經由抑制SK-BR3乳癌細胞之EGFR及ErbB2磷酸化與蛋白質表現與EGFR依賴的ERK、JNK、Akt (Ser473)訊號路徑,進而負向調控EGF所誘發uPA、MMP-1及MMP-9表現,達到抑制SK-BR3乳癌細胞轉移。

Breast cancer is the most commonly diagnosed cancer among women all over the world. Metastasis is the leading cause of death from breast cancer. EGFR and ErbB2 are an important oncogene overexpressed in about 20~30% of breast cancers, and was associated with poor patient outcome and distant metastasis. Previous study showed the induction of urokinase plasminogen activator (uPA) and matrix metalloproteinase (MMP)-1 and MMP-9 activity and expression were associated with breast cancer metastasis. EGF up-regulated uPA, MMP-1, MMP-9 expression by activating EGFR/ErbB2 in ErbB2-overexpressing SK-BR3 breast cancer cells. Diets consisting mostly of docosahexaenoic acid (DHA) have shown to reduce breast cancer incidence rate and have better outcomes There have been several studies on the role of DHA in suppressing breast cancer metastasis,however, the mechanism for the down-regulation of SK-BR3 breast cancer metastasis by DHA is not fully clarified. In the present study, we used ErbB2-overexpression SK-BR3 breast cancer cells to study the effect of DHA on EGF-induced EGFR/ErbB2 expression and activation, and further to investigate whether their downstream signaling pathways are involved in DHA''s down-regulation of EGF-induced MMP-1/-9 and uPA expression in SK-BR3 human breast cancer cells. We found that EGF (40 ng/ml) induced MMP-1, MMP-9, and uPA mRNA, protein expression and enzyme activity in both dose- and time-dependent manners, and 100 μM DHA significantly inhibited the induction of EGF. DHA was shown to inhibit EGF-induced activation of ERK1/2, JNK and Akt (Ser473). AG1478, a tyrosine kinase inhibitor of the EGFR, attenuated ERK1/2, JNK and Akt (Ser473) activation as well. The phosphorylation of EGFR and ErbB2 was induced within 15 min after EGF treatment and the total amount of protein was found to increase after 12 h of EGF exposure and these induction were decreased by DHA. Immuno-fluorescence assay and co-immuno-precipitation analysis showed DHA decreases EGFR expression and intracellular localization in the presence of EGF as well as the interaction between EGFR and ErbB2 was disrupted by DHA. These results suggest that attenuation of EGFR and ErbB2 expression and disruption of protein interaction between EGFR and ErbB2 and EGFR-dependent signaling pathways (ERK1/2、JNK、Akt (Ser473)) are involved in DHA''s down-regulation of EGF-induced MMP-1/-9 and uPA expression in SK-BR3 human breast cancer cells.

目錄 I
圖目錄 IV
表目錄 VI
縮寫表 VII
中文摘要 IX
英文摘要 XI
第一章 文獻回顧 1
一、乳癌現況 1
二、乳癌 1
1. 何謂乳癌 1
2. 乳癌病理 1
3. 乳癌分型 2
三、人類上皮生長因子受體 4
1. HER家族簡介 4
2. HER家族成員與配體 5
3. HER及其下游訊號傳遞路徑 6
四、EGFR/ErbB2與乳癌 8
五、癌症生成與癌細胞轉移 8
1. Carcinogenesis 8
2. Metastasis 9
3.尿激酶型血纖維蛋白溶解酶原活化因子 11
3.1.調控uPA基因表現之訊號傳遞路徑與轉錄因子 12
3.2. uPA和乳癌細胞轉移 13
4.基質金屬蛋白酶 14
4.1.調控MMP-1及MMP-9表現之訊號傳遞路徑與轉錄因子 16
4.2. MMP-1及MMP-9和乳癌細胞轉移 18
六、多元不飽和脂肪酸 19
1. n-3及n-6 PUFAs之生理作用 20
2. n-3 PUFAs抑癌機轉 21
3. n-3 PUFAs與乳癌 23
第二章 研究動機 24
第三章 實驗材料與方法 25
一、研究架構 25
二、實驗材料 26
三、實驗方法 33
1. 細胞培養 33
2. 細胞存活率分析 34
3. 細胞處理與蛋白質製備 35
4. 蛋白質定量 36
5. 西方點墨法 36
6. 共同免疫沉澱分析法 37
7 Casein-plasminogen/Gelatin zymography 38
8.RNA萃取與定量 39
9. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 40
10. Real-time Quantitative Polymerase Chain Reaction
(Real-time PCR) 40
11. Boyden chamber assay 41
12. 免疫螢光染色法 43
13. 統計分析 43
第四章 研究結果 44
一、不同劑量的DHA、AG1478與EGF對SK-BR3乳癌細胞存活率
之影響 44
二、EGF對誘發SK-BR3乳癌細胞之uPA、MMP-1及MMP-9
表現之影響 44
三、EGF對SK-BR3乳癌細胞ERK1/2、JNK1/2、P38及Akt蛋
白質磷酸化之影響 45
四、MAPK及PI3K/Akt訊號傳遞路徑在EGF誘發uPA、MMP-1及
MMP-9表現所扮演之角色 46
五、DHA對EGF誘發SK-BR3乳癌細胞之uPA、MMP-1及
MMP-9表現及其相關訊號傳遞路徑之影響 46
六、DHA對EGF誘發SK-BR3乳癌細胞移行及侵襲之影響 47
七、EGF對誘發SK-BR3乳癌細胞之EGFR及ErbB2磷酸化
與蛋白質表現之影響 47
八、DHA對EGF誘發SK-BR3乳癌細胞之EGFR及ErbB2磷酸化
與蛋白質表現之影響 48
九、DHA對SK-BR3乳癌細胞之EGFR及ErbB2蛋白質穩定性之影響 48
十、DHA對EGF誘發SK-BR3乳癌細胞之EGFR蛋白質表現
與分佈 49
十一、DHA對EGF誘發SK-BR3乳癌細胞之EGFR及ErbB2蛋白質
交互作用之影響 49

第五章 討論 72
第六章 結論 79
附錄一 SDS-PAGE配方 81
附錄二 0.2% CASEIN-8% SDS配方 82
附錄三 0.1% GELATIN-8% SDS配方 83
附錄四 REAL-TIME PCR所使用之基因序列 84
附錄五 PCR MIXTURE配方 85
文獻參考 86



圖目錄
文獻回顧
圖一、乳癌亞型的分類 3
圖二、HER結構HER活化型;受配體活化,形成複合體 5
圖三、HER成員與配體 6
圖四、活化HER與其下游訊息傳遞路徑 7
圖五、癌細胞轉移的主要過程 10
圖六、Plasminogen活化過程中,uPA之功能與調控 12
圖七、uPA基因之轉錄因子結合區 13
圖八、MMP-1及MMP-9基因之轉錄因子結合區 17
圖九、n-3及n-6 PUFAs合成eicosanoids之代謝圖 21
圖十、n-3 PUFAs影響胞內相關之訊息傳遞及轉錄因子 22

圖表結果
圖一、不同劑量DHA、AG1478與EGF對SK-BR3乳癌細胞存活率
之影響 51
圖二、不同劑量EGF處理對誘發SK-BR3乳癌細胞之uPA、
MMP-1及MMP-9表現之影響 52
圖三、不同EGF處理時間對誘發SK-BR3乳癌細胞之uPA、
MMP-1及MMP-9表現之影響 54
圖四、EGF處理短時間對誘發SK-BR3乳癌細胞之訊號傳遞路徑
之影響 56
圖五、EGF合併處理激酶抑制劑對誘發SK-BR3乳癌細胞
之uPA、MMP-1及MMP-9表現之影響 57
圖六、預處理不同劑量DHA對EGF誘發SK-BR3乳癌細胞
之uPA、MMP-1及MMP-9表現之影響 59
圖七、預處理DHA及EGFR磷酸化抑制劑對EGF誘發SK-BR3
乳癌細胞之訊號傳遞路徑之影響 61
圖八、預處理DHA及EGFR磷酸化抑制劑對EGF誘發SK-BR3
乳癌細胞移行及侵襲之影響 62
圖九、EGF處理短時間對誘發SK-BR3乳癌細胞EGFR及ErbB2
磷酸化之影響 65
圖十、不同EGF處理時間對誘發SK-BR3乳癌細胞之EGFR及
ErbB2蛋白質表現之影響 66
圖十一、預處理DHA及EGFR磷酸化抑制劑對EGF誘發SK-BR3
乳癌細胞EGFR與ErbB2磷酸化之影響 67
圖十二、預處理不同劑量DHA對EGF誘發SK-BR3乳癌細胞
之EGFR及ErbB2蛋白質表現之影響 68
圖十三、在CHX作用下,DHA不同處理時間對SK-BR3乳癌細胞
之EGFR及ErbB2蛋白質表現之影響 69
圖十四、預處理DHA對EGF誘發SK-BR3乳癌細胞之EGFR蛋白質
表現與分佈 70
圖十五、預處理DHA對EGF誘發SK-BR3人類乳腺癌細胞
之EGFR及ErbB2蛋白質交互作用之影響 71

結論
圖一、DHA抑制EGF所誘發SK-BR3乳癌細胞之uPA、MMP-1
及MMP-9表現進而負向調控癌細胞轉移之路徑圖 79


表目錄
文獻回顧
表一、乳癌亞型之特點 4
表二、基質金屬蛋白酶之分類 16




行政院衛生署國民健康局(2013):中華民國99年癌症登記報告。臺北:行政院衛生署國民健康局 編印。
行政院衛生署(2013):中華民國101年死因統計結果分析。臺北:行政院衛生署 編印。
Adachi S, Nagao T, To S, Joe A K, Shimizu M, Matsushima-Nishiwaki R, Kozawa O, Moriwaki H, Maxfield FR, Weinstein I B. (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis (2008); 29: 1986–1993.
Amos S, Redpath GT, Dipierro CG, Carpenter JE, Hussaini IM. Epidermal growth factor receptor-mediated regulation of urokinase plasminogen activator expression and glioblastoma invasion via C-SRC/MAPK/AP-1 signaling pathways. J Neuropathol Exp Neuro (2010); 69: 582–592.
Andreasen PA, Kjøller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer (1997); 72: 1–22.
Anido J, Matar P, Albanell J, Guzman M, Rojo F, Arribas J, Steve A, Baselga J. ZD1839 , a specific epidermal growth factor receptor ( EGFR ) tyrosine kinase inhibitor , induces the formation of inactive EGFR / HER2 and EGFR / HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells. Clin Cancer Re (2003); 9: 1274–1283.
Arteaga CL, Moulder SL, Yakes FM. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Seminars in Oncology (2002); 29: 4–10.
Baker EA, Stephenson TJ, Reed MWR, Brown, N. J. Expression of proteinases and inhibitors in human breast cancer progression and survival. J Clin Pathol: Mol Patho (2002); 55: 300–304.
Baracos VE, Mazurak VC, Ma DWL. n-3 Polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr Res Rev (2004); 17: 177–192.
Benasciutti E, Pagès G, Kenzior O, Folk W, Blasi F, Crippa MP. MAPK and JNK transduction pathways can phosphorylate Sp1 to activate the uPA minimal promoter element and endogenous gene transcription. Blood (2004); 104: 256–262.
Benbow U, Brinckerhoff CE. The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol (1997); 15: 519–526.
Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chénais B. Docosahexaenoic acid intake decreases proliferation , increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int J Onco (2010); 36: 737–742.
Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Bio (2002); 3: 932–943.
Bond M, Chase AJ, Baker AH, Newby AC. Inhibition of transcription factor NF-kB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res (2001); 50: 556–565.
Boström P, Söderström M, Vahlberg T, Söderström KO, Roberts PJ, Carpén O, Hirsimäki P. MMP-1 expression has an independent prognostic value in breast cancer. BMC cancer (2011); 11: 348–355.
Boudreau MD, Chanmugam PS, Hart SB, Lee SH, Hwang DH. Lack of dose response by dietary n-3 fatty acids at a constant ratio of n-3 to n-6 fatty acids in suppressing eicosanoid biosynthesis from arachidonic acid. Am J Clin Nutr (1991); 54: 111–117.
Boudreau MD, Sohn KH, Rhee SH, Lee SW, Hunt JD, Hwang DH. Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways. Cancer Res (2001); 15: 1386–1391.
Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmu G, Pantel K. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I−III breast cancer patients. Cancer Res (2001); 5: 1890–1895.
Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol (2005); 23: 7350–7360.
Brinckerhoff CE, Rutter JL, Benbow U. Interstitial Collagenases as Markers of Tumor Progression. Clin Cancer Res (2000); 12: 4823–4830.
Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DMS. Molecular interactions in cancer cell metastasis. Acta histochem (2010); 112: 3–15.
Buergy D, Weber T, Maurer G D, Mudduluru G, Medved F, Leupold JH, Brauckhoff M, Post S, Dralle H, Allgayer H. Urokinase receptor, MMP-1 and MMP-9 are markers to differentiate prognosis, adenoma and carcinoma in thyroid malignancies. Int J Cancer (2009); 125: 894–901.
Cai F, Sorg O, Granci V, Lecumberri E, Miralbell R, Dupertuis YM, Pichard C. Interaction of ω-3 polyunsaturated fatty acids with radiation therapy in two different colorectal cancer cell lines. Clin Nutr (2013); 13: 1–7.
Calder PC, Grimble RF. Polyunsaturated fatty acids, inflammation, and immunity. Lipids (2001); 36: 1007–1024.
Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S et al. Race, breast cancer subtypes, and survival in the carolina breast cancer study. JAMA (2006); 295: 2492–2502.
Carmeliet P, Moons L, Lijnen R, Baes M, Lemaître V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet (1997); 17: 439–444.
D''Armiento J, DiColandrea T, Dalal SS, Okada Y, Huang MT, Conney AH, Chada K. Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol Cell Biol (1995); 15: 5732-5739.
Chase AJ, Bond M, Crook MF, Newby AC. Role of nuclear factor-kappaB activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler Thromb Vasc Biol (2002); 22: 765–771.
Chase AJ, Newby AC. Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J Vasc Res (2003); 40: 329–343.
Chen HW, Lu CY, Li CC, Chao CY, Liu KL, Lin LL., Lii CK. Inhibition of matrix metalloproteinase-9 expression by docosahexaenoic acid mediated by heme oxygenase 1 in 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 human breast cancer cells. Arch Toxicol (2013); 87: 857–869.
Cho SJ, Chae MJ, Shin BK, Kim HK, Kim A. Akt- and MAPK-mediated activation and secretion of MMP-9 into stroma in breast cancer cells upon heregulin treatment. Mol Med Rep (2008); 1: 83–88.
Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A, Berra B, Rizzo AM. Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis (2011); 10: 73–88.
Cortez DM, Feldman MD, Mummidi S, Valente AJ, Steffensen B, Vincenti M, Barnes JL, Chandrasekar B. IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBP-beta , NF-kappaB, and AP-1 activation. Am J Physiol Heart Circ Physiol (2007); 293: 3356–3365.
Cowing BE, Saker KE. Recent advances in nutritional sciences polyunsaturated fatty acids and epidermal growth factor receptor/mitogen-activated protein kinase signaling in mammary cancer. J Nutr (2001); 131: 1125–1128.
Crippa MP. Urokinase-type plasminogen activator. Int J Biochem Cell Biol (2007); 39: 690–694.
Damtew B, Spagnuolo PJ. Tumor cell-endothelial cell interactions: evidence for roles for lipoxygenase products of arachidonic acid in metastasis. Prostaglandins Leukot Essent Fatty Acids (1997); 56: 295–300.
Das R, Mahabeleshwar GH, Kundu GC. Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J Biol Chem (2004); 19: 11051–11064.
Das U. A radical approach to cancer. Med Sci Monit (2002); 8: 79–92.
De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol (2000); 20: 83–88.
Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev (2006); 25: 9–34.
Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J, Bartholomeusz G, Li Y, Pan Y, Li Z et al. Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mo Cell (2005); 19: 159–170.
Duffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des (2004); 10: 39–49.
Duffy MJ, Maguire TM, McDermott EW, O’Higgins N. Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol (1999); 71: 130–135.
Duffy MJ, Mcgowan PM, Gallagher WM. Cancer invasion and metastasis: changing views. J Pathol (2008); 214: 283–293.
Duffy MJ, O’Grady P, Devaney D, O’Siorain L, Fennelly JJ, Lijnen HJ. Urokinase- Plasminogen Activator, A Marker for Aggressive Breast Carcinomas. Cancer (1988); 62: 531–533.
Eccles SA. The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol (2011); 55: 685–696.
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Caner (2002); 2: 161–174.
Ellis V, Danø K. Plasminogen activation by receptor-bound urokinase. Semin Thromb Hemost (1991); 17: 194–200.
Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. CancerTtreat Rre (2012); 38: 698–707.
Fidler IJ. The pathogenesis of cacner metastasis: the ''seed and soil'' hypothesis revisited. Ner Rev Cancer (2003); 3: 453–458.
Fischer OM, Hart S, Gschwind A, Ullrich A. EGFR signal transactivation in cancer cells. Biochem Soc Trans (2003); 31: 1203–1208.
Folkman J, Shing Y. Angiogenesis. J Biol Chem (1992); 267: 10931–10934.
Fortin PR, Lew RA, Liang MH, Wright EA, Beckett LA, Chalmers TC, Sperling RI. Validation of a meta-analysis: the effects of fish oil in rheumatoid arthritis. J Clin Epidemiol (1995); 48: 1379–1390.
Garbett EA, Reed MW, Stephenson TJ, Brown NJ. Proteolysis in human breast cancer. Mol Pathol (2000); 53: 99–106.
Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens (2002); 20: 1493–1499.
Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J (2011); 278: 16–27.
Ghiso JA, Katherine Kovalski K, Ossowski L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol (1999); 147: 89–104.
Gonzalez-Angulo AM, Hennessy BT, Meric-Bernstam F, Sahin A, Liu W, Ju Z, Carey MS, Myhre S, Speers C, Deng L, Broaddus R et al. Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clin Proteomics (2011); 8: 11–25.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell (2000); 100: 57–70.
Hannemann J, Kristel P, Van Tinteren H, Bontenbal M, Van Hoesel QGCM, Smit WM, Nooij MA, Voest EE, van der Wall E, Hupperets P et al. Molecular subtypes of breast cancer and amplification of topoisomerase II alpha: predictive role in dose intensive adjuvant chemotherapy. Br J Cancer (2006); 95: 1334–1341.
Hansen SK, Nerlov C, Zabel U, Verde P, Johnsen M, Baeuerle PA, Blasi F. A novel complex between the p65 subunit of NF-kappa B and c-Rel binds to a DNA element involved in the phorbol ester induction of the human urokinase gene. EMBO J (1992); 11: 205–213.
Hardman WE, Avula CP, Fernandes G, Cameron IL. Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res (2001); 7: 2041–2049.
Henjes F, Bender C, Von der Heyde S, Braun L, Mannsperger HA, Schmidt C, Wiemann S, Hasmann M, Aulmann S, Beissbarth T et al. Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis (2012); 1: 16–24.
Holbro T, Civenni G, Hynes N E. The ErbB receptors and their role in cancer progression. Exp Cell Res (2003); 284: 99–110.
Horia E, Watkins BA. Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells. Carcinogenesis (2007); 28: 809–815.
Hubbard NE, Lim D, Erickson KL. Alteration of murine mammary tumorigenesis by dietary enrichment with n-3 fatty acids in fish oil. CancerLlet (1998); 124: 1–7.
Hwang YP, Yun HJ, Choi JH, Han EH, Kim HG, Song GY, Kwon KI, Jeong TC, Jeong HG. Suppression of EGF-induced tumor cell migration and matrix metalloproteinase-9 expression by capsaicin via the inhibition of EGFR-mediated FAK/Akt , PKC/Raf/ERK, P38 MAPK, and AP-1 signaling. Mol Nutr Food Res (2011); 55: 594–605.
Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer (2005); 5: 341–354.
Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Cur Opin Cell Bio (2009); 21: 177–184.
Ibañez-Tallon I, Ferrai C, Longobardi E, Facetti I, Blasi F, Crippa MP. Binding of Sp1 to the proximal promoter links constitutive expression of the human uPA gene and invasive potential of PC3 cells. Blood (2002); 100: 3325–3332.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global Cancer Statistics. CA Cancer J Clin (2011); 61: 69–90.
John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res (2001); 7: 14–23.
Jones JL, Walker RA. Control of matrix metalloproteinase activity in cancer. J Pathol (1997); 379: 377–379.
Jourdan ML, Mahéo K, Barascu A, Goupille C, De Latour MP, Bougnoux P, Rio PG. Increased BRCA1 protein in mammary tumours of rats fed marine omega-3 fatty acids. Oncol Rep (2007); 17: 713–719.
Jung HH, Park YH, Jun HJ, Kong J, Kim JH, Kim JA, Yun J, Sun JM, Won YW, Lee S et al. Matrix metalloproteinase-1 expression can be upregulated through mitogen-activated protein kinase pathway under the influence of human epidermal growth factor receptor 2 synergized with estrogen receptor. Mol Cancer Re (2010); 8: 1037–1047.
Jung JS, Jung K, Kim DH, Kim HS. Selective inhibition of MMP-9 gene expression by mangiferin in PMA-stimulated human astroglioma cells: involvement of PI3K/Akt and MAPK signaling pathways. Pharmacol Res (2012); 66: 95–103.
Jung Y, Xu W, Kim H, Ha N, Neckers L. Curcumin-induced degradation of ErbB2: A role for the E3 ubiquitin ligase CHIP and the Michael reaction acceptor activity of curcumin. Biochim Biophys Acta (2006); 1773: 383–390.
Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS One (2010); 5: 10296–10308.
Kerkelä E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol (2003); 12: 109–125.
Kim J, Yu W, Kovalski K, Ossowski L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell (1998); 94: 353–362.
Kim S, Han J, Lee SK, Choi MY, Kim J, Lee J, Jung SP, Kim JS, Kim JH, Choe JHet al. Berberine suppresses the TPA-induced MMP-1 and MMP-9 expressions through the inhibition of PKC-α in breast cancer cells. J Surg Res (2012); 176: 21–29.
Kim S, Han J, Shin I, Kil WH, Lee JE, Nam SJ. A functional comparison between the HER2(high)/HER3 and the HER2(low)/HER3 dimers on heregulin-β1-induced MMP-1 and MMP-9 expression in breast cancer cells. Exp Mol Med (2012); 44: 473–482.
Kossakowska AE, Huchcroft SA, Urbanski SJ, Edwards DR. Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia , sporadic colorectal neoplasia , pulmonary carcinomas and malignant non-Hodgkin’ s lymphomas in humans. Br J Cancer (1996); 73: 1401–1408.
Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol (2003); 23: 20–30.
Kupferman ME, Fini ME, Muller WJ, Weber R, Cheng Y, Muschel RJ. Matrix metalloproteinase 9 promoter activity is induced coincident with invasion during tumor progression. Am J Pathol (2000); 157: 1777–1783.
Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr (2004); 79: 935–945.
Leitzmann MF, Stampfer MJ, Michaud DS, Augustsson K, Colditz GC, Willett WC, Giovannucci EL. Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am J Clin Nutr (2004); 80: 204–216.
Mader CC, Oser M, Magalhaes MAO, Bravo JJ, Condeelis J, Koleske AJ, Gil-henn H. An EGFR-Scr-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res (2012); 71: 1730–1741.
Maemura M, Iino Y, Koibuchi Y, Yokoe T, Morishita Y. Mitogen-activated protein kinase cascade in breast cancer. Oncology (1999); 57: 37–44.
Mandal CC, Ghosh-Choudhury T, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Fish oil prevents breast cancer metastasis to bone. Biochem Biophys Res Commun (2011); 402: 602–607.
Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys (2004); 58: 903–913.
Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr (2009); 28: 525–542.
Mechta-Grigoriou F, Gerald D, Yaniv M. The mammalian Jun proteins: redundancy and specificity. Oncogene (2001); 20: 2378–2389.
Menendez JA, Lupu R, Colomer R. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22: 6n-3 ) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev (2003); 14: 263–270.
Milanezi F, Carvalho S, Schmitt FC. EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy. Expert Rev Mol Diagn (2008); 8: 417–434.
Milani S, Sottocornola E, Zava S, Galbiati M, Berra B, Colombo I. Gangliosides influence EGFR/ErbB2 heterodimer stability but they do not modify EGF-dependent ErbB2 phosphorylation. Biochim Biophys Acta (2010); 1801: 617–624.
Miller P, DiOrio C,Moyer M, Schnur RC, Bruskin A, Cullen W, and Moyer'' JD. Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res (1994); 10: 2724–2730.
Mimnaugh EG, Chavany C, Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem (1996); 37: 22796-22801.
Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J. Genes that mediate breast cancer metastasis to lung. Nuture (2005); 436: 518–524.
Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J (2010); 277: 301–308.
Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol (2003); 60: 940–946.
Murff HJ, Shu XO, Li H, Yang G, Wu X, Cai H, Wen W, Gao YT, Zheng W. Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study. Int J Cancer (2011); 128: 1434–1341.
Myöhänen H, Vaheri A. Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci (2004); 61: 2840–2858.
Nagamine Y, Medcaf RL, Muñoz-Cánoves P. Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost (2005); 93: 661–675.
Noble LS, Takayama K, Zeitoun KM, Putman JM, Johns DA, Hinshelwood MM, Agarwal VR, Zhao Y, Carr BR, Bulun SE. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab (1997); 82: 600–606.
Okuyama N, Matsumine A, Kosugi R, Wakabayashi H, Uchida A. Matrix metalloproteinase-1 is a crucial bone metastasis factor in a human breast cancer-derived highly invasive cell line. Oncol Rep (2008); 20: 1497–1504.
Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J (2000); 19: 3159–3167.
Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res (2009); 7: 4–13.
Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol (2000); 12: 613–620.
Pardini RS. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Int (2006); 162: 89–105.
Park S, Jung HH, Park YH, Ahn JS, Im YH. ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochem Biophys Res Commun (2011); 407: 680–686.
Park YJ, Lee H, Lee JH. Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells. BMB Rep (2009); 43: 91–96.
Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3′-kinase and phospholipase C-dependent mechanism. Cancer Res (1999); 59: 5475–5478.
Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer (2003); 3: 489–501.
Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet (2011); 378: 1812–1823.
Riediger ND, Othman RA Suh M, Moghadasian MH. A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc (2009); 109: 668–679.
Restouin A, Aresta S, Prébet T, Borg JP, Badache A, Collette Y. A simplified, 96-well-adapted, ATP luminescence-based motility assay. Biotechniques (2009); 47: 871–875
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene (2007); 26: 3291–3310.
Rose DP. Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. Am J Clin Nutr (1997); 66: 1513–1522.
Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther (1999); 83: 217–244.
Sandhu R, Parker JS, Jones WD, Livasy CA, Coleman WB. Microarray-based gene expression profiling for molecular classification of breast cancer and identification of new targets for therapy. Lab Medicine (2010); 41: 364–372.
Shi ZD, Ji XY, Berardi DE, Qazi H, Tarbell JM. Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism. Am J Physiol Heart Circ Physiol (2010); 298: 127–135.
Siddiqui RA, Harvey KA, Zaloga GP, Stillwell W. Modulation of lipid rafts by omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support. Nutr Clin Pracl (2007); 22: 74–88.
Simopoulos AP. Human requirement for n-3 polyunsaturated fatty acids. Poult Sci (2000); 79: 961–970.
Slivova V, Zaloga G, Demichele SJ, Mukerji P, Huang Y, Siddiqui R, Harvey K, Valachovicova T, Sliva D. Green tea polyphenols modulate secretion of urokinase plasminogen cctivator (uPA) and inhibit invasive behavior of breast cancer cells. Nutr cancer (2009); 52: 66–67.
Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol (2010); 11: 23–36.
Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A (2001); 98: 10869–10874.
Spector AA. Essentiality of fatty acids. Lipids (1999); 34: 1–3.
Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR. The multifaceted effects of omega-3 polyunsaturated Fatty acids on the hallmarks of cancer. J Lipids (2013); 2013: 1–13
Stillfried GE, Saunders DN, Ranson M. Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res (2007); 9: 14–24.
Terry PD, Rohan TE, Wolk A. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence. Am J Clin Nutr (2003); 77: 532–543.
Theodoratou E, McNeill G, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, Porteous M, Dunlop M, Campbell H. Dietary fatty acids and colorectal cancer: a case-control study. Am J Epidemiol (2007); 166: 181–195.
Thoennissen NH, O''Kelly J, Lu D, Iwanski GB, La DT, Abbassi S, Leiter A, Karlan B, Mehta R, Koeffler HP. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene (2010); 29: 285–296.
Ulisse S, Baldini E, Sorrenti S, D’Armiento M. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets (2009); 9: 32–71.
van ''t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature (2002); 415: 530–536.
Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev (2000); 14: 2123–2133.
Wang Z. mutual regulation of receptor-mediated cell signalling and endocytosis: EGF receptor system as an example. ISBN (2012); 10:301–330.
Watabe T, Yoshida K, Shindoh M, Kaya M, Fujikawa K, Sato H, Seiki M, Ishii S, Fujinaga K. The Ets-1 and Ets-2 transcription factors activate the promoters for invasion-associated urokinase and collagenase genes in response to epidermal growth factor. Int J Cancer (1998); 137: 128–137.
Wilkins-Port CE, Higgins SP, Higgins CE, Kobori-Hotchkiss I, Higgins PJ. Complex regulation of the pericellular proteolytic microenvironment during tumor progression and wound repair: functional interactions between the serine protease and matrix metalloproteinase cascades. Biochem Res Int (2012); 2012: 1–8.
Woessner JF. Matrix tissue metalloproteinases remodeling and their inhibitors in connective, FASEB J (1991); 5: 2145–2154.
Wolff M, Tetzlaff K, Nivens MC, Schneider F, Jung B, Hohlfeld J, Heilker R. In vivo inhibition of epidermal growth factor receptor utophosphorylation prevents receptor internalization. Exp Cell Res (2011); 317: 42–50.
Yan C, Boyd DD. Regulation of Matrix Metalloproteinase Gene. J Cell Physiol (2006); 1: 19–26.
Yatabe Y, Takahashi T, Mitsudomi T. Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer. Cancer Res (2008); 68: 2106–2111.
Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cel Signal (2007); 19: 2013–2023.
Zhang YG, Du Q, Fang WG, Jin ML, Tian XX. Tyrphostin AG1478 suppresses proliferation and invasion of human breast cancer cells. Int J Oncol (2008); 33: 595–602.
Zhou BP, Liao Y, Xia W, Spohn B, Lee M, Hung M. Cytoplasmic localization of p21Cipl/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol (2001); 3: 245–252.
Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung M. HER-2/neu induces p53 ubiquitination via Akt-mediated phosphorylation, Nat Cell Biol (2001); 3: 2973–2982.
Zhou Y, Brattain MG. Synergy of epidermal growth factor receptor kinase inhibitor AG1478 and ErbB2 kinase inhibitor AG879 in human colon carcinoma cells is associated with induction of apoptosis. Cancer Res (2005); 65: 5848–5856.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文