跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁嘉鴻
研究生(外文):Wang, Jia-Hong
論文名稱:應用於側視角之集成式飄浮3D影像研究
論文名稱(外文):Achieving Floating 3D Image with Applying Integral Photography Theory in Oblique Viewing Angle
指導教授:黃乙白黃乙白引用關係
指導教授(外文):Huang, Yi-Pai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:76
中文關鍵詞:飄浮影像集成式影像
外文關鍵詞:Floating ImageIntegral Photography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
隨著3D立體影像技術的蓬勃發展,在我們的日常生活中,其廣泛的應用性質和潛力越來越受重視。然而除了平面顯示器和電影院所呈現的正視立體影像,透過科幻電影所描畫呈現的未來科技,那些飄浮在空中可觀賞、互動的立體影像,更是廣泛人們存在於心中的憧憬,為下一世代顯示科技的全新里程碑。為此需要的技術,便是側視角3D立體影像的實現。然而,現今的飄浮3D影像科技,其不便利性和應用上的侷限性,更甚者,相對於呈現影像之本身過大的體積,都尚未達到符合人性化的設計標準。因此,我們渴望能將飄浮3D影像用較為簡潔的概念呈現出來,也期望其應用層面的廣泛可以大至投影機系統,小至行動裝置系統,為此我們使用了側視角的集成式影像做為實現飄浮3D影像的基本理論。不同於一般運用視差給予左右眼不同影像的3D,集成式影像可重建光場,不需欺騙人的大腦,因此不會造成人眼視覺疲勞。在研究當中,我們嘗試使用投影機以及顯示器,並放置透鏡陣列或針孔陣列以觀察其在側視角集成影像顯示中會呈現的特質與問題。除此之外,我們也做了一人因實驗,探討不同的變因,包含飄浮高度、側視角度等等對於飄浮3D影像的觀賞品質影響。此研究藉由將集成式影像的概念運用於投影機和手機上,成功的使用了簡便的架構以及方便的校準達到了飄浮3D影像的呈現,展現了此理論多面應用的特性;光場重建的真實3D影像亦便於人們的互動需求;電腦快速運算的集成影像可跳過紀錄現實景色的步驟,讓呈現影像的自由度提升,具備了更多變因探討的潛力,使我們得以朝嚮往的飄浮3D影像顯示科技踏實邁進。
With the rapid growth of the three-dimensional (3D) stereoscopic image technology, the various application and potential has become more and more important in our modern life. However, comparing with the “pop out” 3D image in the direct viewing angle presented by the flat panel display and movie, the fantastic “floating” 3D image which allows people to perceive and interact with in the sci-fi movie is more and more attractive. Therefore, the floating 3D image is undoubtedly the brand new landmark of the display technology in the next generation. To achieve the target, 3D image in oblique viewing angle, in other words, the floating 3D image is the essential technology. Nevertheless in nowadays, floating image confronts the issues on the inconvenience feature, limitation of application and the volumetric characteristic. The technology is not mature enough for the user-friendly requirement. Hence, we apply a simple concept to achieve the floating 3D image and expect the concept could be applied on various structures, including projector and mobile device. The concept is integral photography (IP) theory in oblique viewing angle. Different with the disparity method of modern 3D technology, which gives different views to our left and right eye to form the 3D image, IP theory reconstructs the light field, showing true 3D image without causing visual fatigue. Among our research, the effect and issue of projection type and display type integral image (InI) in oblique viewing angle with applying micro lens array and pinhole array are discussed in detail. Moreover, a human factor experiment is done. The different factors such as floating height and viewing angle that may influence the image quality of the floating InI are also carefully analyzed. The research applies IP theorem on projector and mobile device, achieving good floating 3D image with simple structure and convenient adjustment and showing various applications and freedom for this concept. Furthermore, the true 3D image with light field reconstruction could satisfy the interaction requirement; the rapid calculation with computational algorithm could draft the image content without the capture stage, enhancing the freedom of the displaying image and also showing the potential for discussion with many kinds of factors in the future. The research would lead us step by step to the fantastic and charming world of floating 3D image technology.
摘  要 i
Abstract ii
誌  謝 iv
Contents vi
Figure Captions ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Preface: Potential and Development of 3D Technology 1
1.2 Prior Arts of Floating Image Technology 4
1.2.1 Floating 2D Image 5
1.2.2 Floating 3D Image 7
1.3 The Issues of Floating Image Technology 11
1.4 Motivation and Objective 13
1.5 Organization of the Thesis 14
Chapter 2 Applying Integral Photography Theory to Achieve Floating Image 16
2.1 Comparison between Disparity Method and Light Field Concept 16
2.1.1 Features of Disparity Method 17
2.1.2 Feature of Light Field Concept 18
2.1.3 Accommodation and Convergence Mismatch 18
2.2 The Principle of Integral Image 19
2.3 Computational Algorithm of Integral Image 22
2.3.1 The Integral Image in Direct Viewing Angle 22
2.3.2 The Integral Image in Oblique Viewing Angle – The Floating Image 25
Chapter 3 Experiment with Applying Micro Lens Array to Achieve Floating Image……… 28
3.1 Experimental Setup 28
3.1.1 Experimental Specification and Parameter 29
3.1.2 Experimental Method 30
3.2 Experimental Result 30
3.2.1 Floating Image with no Visual Depth 31
3.2.2 Floating Image with Visual Depth 32
3.3 Discussion of Applying MLA on Floating Image 34
3.4 Summary 37
Chapter 4 Experiment with Applying Pinhole Array to Achieve Floating Image. 39
4.1 Experimental Setup 39
4.2 Experimental Result 39
4.2.1 Floating Image with no Visual Depth 40
4.2.2 Floating Image with Visual Depth 41
4.3 Method for 3D Feeling Improvement 42
4.3.1 Floating Image with Rotating Animation 43
4.3.2 Floating Image in Horizontal Movement with Reference 44
4.4 Issues of Applying Pinhole Array 46
4.4.1 Floating Image Quality 47
4.4.2 Similarity between Pinhole and Discrete Light Points 48
4.4.3 Position Matching Issue 49
4.5 Summary 51
Chapter 5 Experiment with Applying Commercial Mobile Display to Achieve Floating Image 54
5.1 Display Type Floating InI Design 54
5.1.1 Display Type InI Parameters 55
5.1.2 Definition of the Receiving Angle 56
5.2 Demonstration of Display type Floating Image 57
5.2.1 Performance of Different Receiving Angle 59
5.2.2 Advantage of Applying Display Type InI on Floating Image 59
5.3 Judging the Image Quality with Human Factor Experiment 60
5.3.1 Experimental Parameters 60
5.3.2 Experimental Procedures 61
5.4 Experimental Result 62
5.4.1 Viewing Angle V.S. Floating Height 62
5.4.2 Receiving Angle V.S. Floating Height 63
5.4.3 Viewing Angle V.S. Receiving Angle 64
5.4.4 Interim Summary 65
5.5 Summary 66
Chapter 6 Conclusions and Future Work 68
6.1 Conclusions 68
6.2 Future Works 71
Reference 73

[1] C. Wheatstone, “Contributions to the Physiology of Vision,” Philosophical Transactions of the RoyalSociety of London 4, 76-77, 1837
[2] Markus Lappe, Frank Bremmer, and A.V. van den Berg, “Perception of Self-Motion from Visual Flow,” Trends in Cognitive Sciences, 3(9), pp.329-336, 1999
[3] Yu-June Wu, Yue-Shin Jeng, Pi-Chun Yeh. Chin-Jen Hu, and Wei-Ming Haung, “Stereoscopic 3D Display Using Patterned Retarder”, SID Symposium Digest 39, pp.260-263, 2008
[4] Daiichi Suzuki, Tetsuo Fukami, Emi Higano, Naoya Kubota, Toshiyuki Higano, Seiji Kawaguchi, Yuuki Nishimoto, Kazuhiro Nishiyama, Kenji Nakao, Takayoshi Tsukamoto, and Hirofumi Kato, “Crosstalk-Free 3D Display with Time-Sequential OCB LCD,” SID Symposium Digest 40, pp.428-431, 2009
[5] Wojciech Matusik and Hanspeter Pfister, “3D TV: A Scalable System for Real-Time Acquisition, Transmissionm and Autostereoscopic Display of Dynamic Scenes”, ACM Transactions on Graphics, 23(3), pp.814-824, 2004
[6] Kenneth. N. Ogle, “Some Aspects of Stereoscopic Depth Perception,” Mayo Clinic and Mayo Foundation, Section of Biophysics, Rochester, Minnesota 55901
[7] “Heliodisplay,” StudyMode.com, StudyMode.com, Web. 02. 2010 [Online].
Available: http://www.studymode.com/essays/Heliodisplay-282244.html
[8] “Cheoptics360: the future of 3D video is here,” Engadger, Retrieved September 23, 2013 [Online].Available:http://www.engadget.com/2006/11/02/cheoptics360-the-future-of-3d-video-is-here/
[9] “http://www.fractal.ae/hologram/cheoptics-360/,” Fractal Systems, Retrieved November 22, 2013 [Online]. Available: http://www.fractal.ae/hologram/cheoptics-360/
[10] Jose J. Lunazzi and Pierre M. Boone “One-step technique for enlarging straddling holographic images by white-light projection onto a diffractive screen,” in Physics Institute, Campinas State University, C.P. 6165, 13081-1 00 Campinas, Sdo Paulo, Brazil and University of Gent, Sint-Pietersnieuivstraat 41, B-9000 Gent, Belgium, 1994
[11] Jose J. Lunazzi, “Color on white-light three-dimensional images projected on holographic screens by three-chromatic multiple projection: first results for an image point,” in Physics Institute, Campinas State University, Brazil, 2008
[12] Young Min Kim, Joon Kyu Yim, and Sung-Wook Min, “Image floating 3D Displays,” Dept. of Inform. Display, Kyung Hee University, Seoul 130-701, Korea, 2012
[13] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130, 1962
[14] “Japanese Device Uses Laser Plasma to Display 3D Images in the Air,” Phys.org, 27 Feb 2006 [Online]. Available: http://phys.org/news11251.html
[15] A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express Vol. 18, 656–661 (2010)
[16] Coltheart M. “The persistences of vision,” Philos Trans R Soc Lond B Biol Sci. 1980 Jul. 8; 290(1038):57–69. PMID 6106242
[17] “MIT Firefly,” from SENSEable City Lab, MIT [Online].
Available: http://senseable.mit.edu/flyfire/
[18] Shunsuke Yoshida, “fVision: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media,” National Institute of Information and Communications Technology (NICT), Proc. SPIE 8384, 2012
[19] H. Horimai, D. Horimai, T. Kouketsu, P. Lim, and M. Inoue, “Full-color 3D display system with 360 degree horizontal viewing angle,” Proc. Symposium of 3D and Contents, 7–10 (2010)
[20] Xinxing Xia, Xu Liu, Haifeng Li, Zhenrong Zheng, Han Wang, Yifan Peng and Weidong Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express Vol. 21, No.9, 2013
[21] Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166, 1997
[22] David Fattal1, Zhen Peng1, Tho Tran1, Sonny Vo1, Marco Fiorentino1, Jim Brug1 & Raymond G. Beausoleil1, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature Vol.351, Mar, 2013
[23] Kazuhiko Ukai, Peter A. Howarth, “Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations,” Displays 29 (2008) 106–116
[24] I. Amidror, “The Theory of the Moiré Phenomenon.” (Kluwer Academic Publishers, Dordrecht, 2000)
[25] Teng-Yao Tsai, Chih-Hung Ting, Kuang-Hung Peng, Jia-Hong Wang, and Yi-Pai Huang, “User Interface Design for 3D Touching,” 3DSA 2013
[26] Hsuan-He Fang, Guo-Zhen Wang, Chia-Wei Chang and Yi-Pai Huang, “3D Multi-Touch System by Using Coded Optical Barrier on Embedded Photo-Sensors,” SID Symposium Digest 44, page 1513-1516, Jun, 2013
[27] Dr Nick Holliman “3D Display Systems,” Department of Computer Science, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, February, 2005
[28] I. Sexton and P. Surman, “Stereoscopic and Autostereoscopic Display Systems,” Signal Processing Magazine, IEEE, vol. 16, pp. 85-99, 1999.2
[29] N. A. Dodgson, “Autostereoscopic 3D Displays,” Computer, vol. 38, pp. 31-36, 2005.2
[30] M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13(23), 9629–9635, 2005
[31] Williamht. Carter, “Computational Reconstruction of Scattering Objects from Holograms,” Departnment of Physics and Astronomzy, University of Rochester, Rochester, New York 14627, November, 1969
[32] Jonathan Grudin, Susan F. Ehrlich, and Rick Shriner, “Positioning Human Factors in the User Interface Development Chain,” ACM, pp.125-131, 1986
[33] F.L. Kooi and A. Toet, “Visual confort of binocular and 3D displays,” Displays 25, 99-108, 2004
[34] Kazuhiko Ukai, Hiroshi Oyamada, and Satoshi Ishikawa, “Changes in Accommodation and Vergence Following 2 Hours of Movie Viewing Through Bi-Ocular Head-Mounted Display,” Accommodation and Vergence Mechanisms in the Visual System, pp.313-325, 2000
[35] G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. of Phys. 7, 821-825 (1908)
[36] H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931)
[37] C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–74 (1968)
[38] M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Phot. News 22 (12), 50 (2011)
[39] Manuel Martinez-Corral, Adrian Dorado, Anabel Llavador, Genaro Saavedra and Bahram Javidi, “Three-Dimentional Integral Imaging And Display,” Department of Optics, University of Valencia, E46100 Burjassot, Spain and Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 2009
[40] S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).2
[41] J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification,” Appl. Opt. 43, 4882-4895 (2004)
[42] M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).2
[43] ChunHong Wu, Malcolm McCormick, Amar Aggoun, Member, IEEE, and S. Y. Kung, “Depth Mapping of Integral Images through Viewpoint Image Extraction with a Hybrid Disparity Analysis Algorithm,” Journal of Technology, Vol. 4, No. 1, March 2008
[44] Ming Xi, Liang-Hao Wang, Qing-Qing Yang, Dong-Xiao Li and Ming Zhang, “Depth-image-based rendering with spatial and temporal texture synthesis for 3DTV,” EURASIP Journal on Image and Video Processing, September, 2013
[45] Byoungho Lee, Jae-Hyeung Park, and Sung-Wook Min, “Three-Dimensional Display and Information Processing Base On Integral Imaging,” School of Electrical Engineering, Seoul National University, Kwanak-gu Shinlim-dong, Seoul 151-744, Korea; Digital Media Lab, Information and Communications University, 517-10 Dogok-dong, Gangnam-gu, Seoul 135-854, Korea, 2011
[46] Rau´l Martı´nez-Cuenca, Genaro Saavedra, Manuel Martı´nez-Corral, and Bahram Javidi, “Progressin3-DMultiperspective Display by Integral Imaging,” Proc. IEEE, Vol. 97, No.6, 2009
[47] H. REN, Y.H. FAN, et al. “Tunable-Focus Cylinderical Liquid Crystal Lens,” Jpn. J. ppl. Phys. Vol. 43 pp. 652, 2004

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top