跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/03 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳怡樺
研究生(外文):Chen, Yi-Hua
論文名稱:以多參數評估之穿戴式步態對稱性評估系統開發
論文名稱(外文):Development of a Wearable Gait Symmetry Evaluation System for Identifying Gait Symmetry by Multi-Parameters
指導教授:楊秉祥楊秉祥引用關係
指導教授(外文):Yang, Bing-Shiang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:98
中文關鍵詞:步態對稱性中風系統陀螺儀步態階段自相關係數互相關係數
外文關鍵詞:gaitsymmetrystrokesystemgyroscopegait phaseautocorrelationcross-correlationsymmetry index
相關次數:
  • 被引用被引用:2
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中風所引起的偏癱現象會造成步態不對稱,以及病患生活上的不便,為了恢復患者生活水平,在臨床上主要以下肢復健來解決此問題,而患者是否適合復健、要以何種方式復健以及復健後之成效如何,都需要由步態評估來獲得,而各種步態參數中,對稱性為重要項目之一。現在有許多研究以慣性感測器來量化步態對稱性,此外已有研究將步態擺盪期與站立期之時間長進行對稱性分析,但都尚未有研究將步態運動學參數的擺盪期與站立期分開計算對稱性。根據步態這兩階段所使用之肌肉不同,以及這兩階段不對稱所代表之意義不同,分別對步態兩階段進行對稱性分析應可提供臨床更多患者的復健資訊。
因此本研究目的為開發一穿戴式步態對稱性評估系統,內含慣性感測器模組、藍芽模組以及鋰電池,可對擺盪期與站立期進行快速對稱性分析,以做為臨床步態對稱性評估之參考。在驗證本研究開發之系統方面,本研究以動作擷取系統同步慣性感測器,計算兩系統所得之大小腿矢狀面角速度,並以標準方均根誤差計算兩系統間誤差。在程式方面,本研究根據同步之動作擷取系統,設計一可經由簡單操作辨識出步態兩階段之程式。在對稱性分析方面,使用三種對稱性計算方法對兩腳大小腿矢狀面的旋轉角速度分別對站立期與擺盪期進行訊號分析,此三種方法分別為互相關係數(cross-correlation)、面積差異(area difference)與時間差異(time difference)。左右腳各一步可得4對訊號,分別為站立期之大腿、站立期之小腿、擺盪期之大腿以及擺盪期之小腿的左右腳訊號,一對訊號以三種量化法進行對稱性量化可得3種對稱值,因此 4對訊號可得12項對稱值。本研究進行八位無中風之健康男性(24±2歲,172±6公分,67±7公斤)以及兩位中風偏癱患者(男,62歲,172公分,73.5公斤,Brunnstrom stage: V;女,47歲,160公分,65.5公斤,Brunnstrom stage: III)進行步態實驗。每位受測者行走3趟,每趟取中間4步進行對稱性分析,因此可得到12步之對稱性平均值與其標準差。
本系統所得之角速度參數與動作擷取系統所得之角速度參數進行比較,兩系統所量得之誤差在5~8%之間,為可接受範圍。對稱性分析結果顯示,Brunnstrom stage為V之中風偏癱患者,以互相關係數計算所得之大腿對稱性,落在健康者的95%信賴區間範圍內,而以其他方法計算所得之對稱性表現皆比健康者低且落在健康者的95%信賴區間範圍外,顯示互相關係數有時無法辨識不對稱現象。而Brunnstrom stage為III之中風偏癱患者,12個對稱值都顯示較健康者低且在健康者的95%信賴區間範圍外。
本研究成功研發一輕便的穿戴式步態對稱評估系統,可由簡單的程式操作,得到步態在不同階段之對稱值。此系統可對大小腿之擺盪期與站立期,進行較人為評估更為仔細且客觀的對稱性評估,可供臨床評估人員作為參考,此外本系統還可進一步辨識出患者不同程度之對稱性差異。

Hemiplegia is commonly caused by stroke and usually leads to an asymmetrical gait. Both before and after rehabilitation, gait assessments need to be made to determine whether the patients can do rehabilitation or how effective the rehabilitation program was. Among all gait assessments, symmetry is an important gait characteristic. Previous researchers have used inertial sensors to quantify gait symmetry, but there has been no previous study using whole waveform patterns of one stride to quantify gait symmetry in swing phase and stance phase, separately. Based on different muscle activation sequences and different implications in two phases, it is significant to quantify them separately. Therefore, we aim to develop a wearable sensor system to determine gait symmetry of thighs and shanks in these phases, separately. This easily programmable and lightweight system can be used to evaluate symmetry immediately and be used by therapists easily.
An eight-camera motion capture system was used to verify the angular velocity obtained by the IMU of our developed system in sagittal plane, and we used normalized root-mean-square error to calculate the error between the two systems. Furthermore, we evaluated gait symmetry against not only thighs and shanks but also stance phase and swing phase. Three approaches were used to evaluate gait symmetry: cross-correlation, area difference and time difference. Cross-correlation and area difference are used to evaluate the waveform patterns generated by two legs over a period of time. Four pairs of angular velocity signal, which are measured from thigh in stance phase, thigh in swing phase, shank in stance phase and shank in swing phase, can be obtained in one stride of two legs. A pair of signal can be calculated to three kinds of symmetry values by
IV
three approaches. Eight intact healthy males (24±2 yrs, 172±6cm, 67±7kg) and two hemiparetic subjects (one male, 62yrs, 172cm, 73.5kg, Brunnstrom stage: V; one female, 47yrs, 160cm, 65.5kg, Brunnstrom stage: III) were recruited to attend the experiments. Every subject completed three trials at comfortable speed. Four strides in the middle of gaits were evaluated in each trial.
The errors between motion capture and inertial sensors are 5~8%, and these values are acceptable. In clinical test, the results of the subject in Brunnstrom stage V show that the symmetry values are lower than the 95% confidence interval (CI) of intact subjects, except the values of cross-correlation. It might represent that cross-correlation is less sensitive to asymmetry gait. Besides, all the symmetry values of the hemiparetic subject in Brunnstrom stage III are less than the symmetry values of the other hemiparetic subject and the intact subjects. The values are all lower than the 95% CI of the intact subjects.
This research has successfully developed a wearable sensor system to determine gait symmetry in stance phase and swing phase, separately. The system can be used easily to evaluate gait symmetry more objective and more quantitative to be provided in clinical use.

中文摘要 I
英文摘要 III
致謝 V
目 錄 VI
表目錄 IX
圖目錄 X
中英文符號對照表 XI
一、前言 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 臨床步態評估方法 3
1.2.2 步態對稱性之重要性 4
1.2.3 步態對稱性評估參數 5
1.2.4 步態對稱性量化方法 9
1.2.5 中風偏癱患者下肢恢復情形 11
1.3 研究目的 14
二、 研究方法 16
2.1 硬體整合 16
2.2以動作擷取系統驗證慣性感測器參數 17
2.2.1 受測者 18
2.2.2 量測設備與環境 18
2.2.3 實驗流程 21
2.2.4 動作擷取系統參數計算方式 22
2.2.5 慣性感測器座標軸校正方法 23
2.2.6 計算動作擷取系統參數與慣性感測器參數之誤差 26
2.2.7 以慣性感測器辨識步態階段之方法 27
2.3 對健康者進行對稱性量化與辨識能力測試 29
2.3.1 受測者 29
2.3.2 量測設備與環境 30
2.3.3 實驗流程 31
2.3.4 三種量化對稱性公式 32
2.3.5 計算健康者95%信賴區間之方法 35
2.3.6 自相關係數計算對稱性 36
2.4 中風偏癱患者臨床實驗 38
2.4.1 受測者 38
2.4.2 量測設備與環境 41
2.4.3 實驗流程 42
三、結果 43
3.1 動作擷取系統與慣性感測器之步態參數比較 43
3.1.1 大小腿矢狀面角速度 43
3.1.2 腳跟著地與腳尖離地時間 44
3.2 辨識刻意創造之不對稱步態與不同走速之對稱性 48
3.3 健康者大小腿對稱性 52
3.4 與自相關係數比較 53
3.5 中風偏癱患者各步態階段之大小腿對稱性 54
3.6 健康者與中風偏癱患者之對稱值標準差 58
3.7 三種對稱參數與臨床肌力(muscle power)數值之相關性 60
四、討論 62
4.1 動作擷取系統與慣性感測器之步態參數比較 62
4.2 辨識刻意創造之不對稱步態與不同走速之對稱性 63
4.2.1 辨識不對稱步態 63
4.2.2 健康者不同行走速度對稱性 64
4.3 健康者大小腿對稱性 64
4.4 與自相關係數比較 65
4.5 中風偏癱患者對稱性討論 66
4.5.1 不同步態階段中三種對稱分析法之比較 66
4.5.2 不同肢段與步態階段之比較 68
4.6 健康者與中風偏癱患者之對稱值標準差 72
4.7 三種對稱參數與臨床結果之相關性與討論 72
4.8 整體系統討論 74
4.9 研究限制 75
五、結論 77
六、未來研究方向與建議 79
七、參考文獻 81
附錄一 臨床評估之應用 87
附錄二 受測者同意書 94

Aminian, K., B. Najafi, C. Bula, P. F. Leyvraz and P. Robert (2002). "Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes." Journal of Biomechanics 35(5): 689-699.
Auvinet, B., G. Berrut, C. Touzard, L. Moutel, N. Collet, D. Chaleil and E. Barrey (2002). "Reference data for normal subjects obtained with an accelerometric device." Gait &; Posture 16(2): 124-134.
Balasubramanian, C. K., M. G. Bowden, R. R. Neptune and S. A. Kautz (2007). "Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis." Archives of Physical Medicine and Rehabilitation 88(1): 43-49.
Behrman, A. L., K. E. Light and G. M. Miller (2002). "Sensitivity of the Tinetti Gait Assessment for detecting change in individuals with Parkinson's disease." Clinical Rehabilitation 16(4): 399-405.
Brunnström, S. (1970). Movement therapy in hemiplegia: a neurophysiological approach. New York, Facts and Comparisons.
Chen, G., C. Patten, D. H. Kothari and F. E. Zajac (2005). "Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds." Gait &; Posture 22(1): 51-56.
Chow, D. H. K., A. D. Holmes, C. K. L. Lee and S. W. Sin (2006). "The effect of prosthesis alignment on the symmetry of gait in subjects with unilateral transtibial amputation." Prosthetics and Orthotics International 30(2): 114-128.
Crenshaw, S. J. and J. G. Richards (2006). "A method for analyzing joint symmetry and normalcy, with an application to analyzing gait." Gait &; Posture 24(4): 515-521.
Crowe, A., M. M. Samson, M. J. Hoitsma and A. A. van Ginkel (1996). "The influence of walking speed on parameters of gait symmetry determined from ground reaction forces." Human Movement Science 15(3): 347-367.
Davis, R. B., S. Ounpuu, D. Tyburski and J. R. Gage (1991). "A gait analysis data collection and reduction technique." Human Movement Science 10(5): 575-587.
De Bujanda, E., S. Nadeau, D. Bourbonnais and R. Dickstein (2003). "Associations between lower limb impairments, locomotor capacities and kinematic variables in the frontal plane during walking in adults with chronic stroke." Journal of Rehabilitation Medicine 35(6): 259-264.
Dosen, S. and D. B. Popovic (2008). "Accelerometers and force sensing resistors for optimal control of walking of a hemiplegic." IEEE Transactions on Biomedical Engineering 55(8): 1973-1984.
Draper, E. R. C. (2000). "A treadmill-based system for measuring symmetry of gait." Medical
82
Engineering &; Physics 22(3): 215-222.
Duncan, P. W., K. J. Sullivan, A. L. Behrman, S. P. Azen, S. S. Wu, S. E. Nadeau, B. H. Dobkin, D. K. Rose, J. K. Tilson and L. I. Team (2007). "Protocol for the locomotor experience applied post-stroke (LEAPS) trial: a randomized controlled trial." BMC Neurology 7(39).
Fei, W., K. Kijun, W. Shiguang, W. Yaning and W. Chengdong (2011). "Study of gait symmetry quantification and its application to intelligent prosthetic leg development." 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO): 1361-1366.
Giakas, G. and V. Baltzopoulos (1997). "Time and frequency domain analysis of ground reaction forces during walking: An investigation of variability and symmetry." Gait &; Posture 5(3): 189-197.
Gizzi, L., J. F. Nielsen, F. Felici, Y. P. Ivanenko and D. Farina (2011). "Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients." Journal of Neurophysiology 106(1): 202-210.
Gladstone, D. J., C. J. Danells and S. E. Black (2002). "The Fugl-Meyer Assessment of motor recovery after stroke: A critical review of its measurement properties." Neurorehabilitation and Neural Repair 16(3): 232-240.
Goble, D. J., G. W. Marino and J. R. Potvin (2003). "The influence of horizontal velocity on interlimb symmetry in normal walking." Human Movement Science 22(3): 271-283.
Gouwanda, D. and S. Arosha Senanayake (2011). "Identifying gait asymmetry using gyroscopes--a cross-correlation and normalized symmetry index approach." Journal of Biomechanics 44(5): 972-978.
Gracies, J. M. (2005). "Pathophysiology of spastic paresis. I: Paresis and soft tissue changes." Muscle &; Nerve 31(5): 535-551.
Gundersen, L. A., D. R. Valle, A. E. Barr, J. V. Danoff, S. J. Stanhope and L. Snyder-Mackler (1989). "Bilateral analysis of the knee and ankle during gait: an examination of the relationship between lateral dominance and symmetry." Physical Therapy 69(8): 640-650.
Haehl, V., V. Vardaxis and B. Ulrich (2000). "Learning to cruise: Bernstein's theory applied to skill acquisition during infancy." Human Movement Science 19(5): 685-715.
Heacuteliot, R., C. Azevedo-Coste, L. Schwirtlich and B. Espiau (2010). "Gait spectral index (GSI): a new quantification method for assessing human gait." Health 2(1): 38-44.
Hendricks, H. T., J. W. Pasman, J. van Limbeek and M. J. Zwarts (2003). "Motor evoked potentials of the lower extremity in predicting motor recovery and ambulation after stroke: A cohort study." Archives of Physical Medicine and Rehabilitation 84(9): 1373-1379.
Hornby, T. G., D. D. Campbell, J. H. Kahn, T. Demott, J. L. Moore and H. R. Roth (2008). "Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor
83
training in subjects with chronic stroke - A randomized controlled study." Stroke 39(6): 1786-1792.
Houdijk, H., F. M. Appelman, J. M. Van Velzen, L. H. V. Van der Woude and C. A. M. Van Bennekom (2008). "Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait." Journal of Rehabilitation Research and Development 45(9): 1335-1342.
Ivanenko, Y. P., R. E. Poppele and F. Lacquaniti (2006). "Motor control programs and walking." Neuroscientist 12(4): 339-348.
Jay R, L., D. Frederick, S. Paul, S. Lana, T. Bert J, K. Douglas J and F. Gerald A (1996). "Differences between patients' and physicians' evaluations of outcome after total hip arthroplasty." The Journal of Bone and Joint Surgery (American) 78(6): 835-838.
Jorgensen, L., N. J. Crabtree, J. Reeve and B. K. Jacobsen (2000). "Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: Bone adaptation after decreased mechanical loading." Bone 27(5): 701-707.
Karaharju-Huisman, T., S. Taylor, R. Begg, J. Cai and R. Best (2001). Gait symmetry quantification during treadmill walking. Anziis 2001: Proceedings of the Seventh Australian and New Zealand Intelligent Information Systems Conference, Centre for Rehabilitation, Exercise &; Sport Science and School of Human Movement Recreation and Performance Victoria University City Flinders Campus Melbourne, Vic 3000.
Kim, C. M. and J. J. Eng (2003). "Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke." Gait &; Posture 18(1): 23-28.
Mahoney, F. I. and D. W. Barthel (1965). "Functional evaluation: the Barthel index." Maryland State Medical Journal 14: 61-65.
McCrory, J. L., S. C. White and R. M. Lifeso (2001). "Vertical ground reaction forces: objective measures of gait following hip arthroplasty." Gait &; Posture 14(2): 104-109.
Medri, E., D. Tepavac, B. Needham and D. Popovic (1994). Comprehensive gait analysis in spinal cord injured patients with functional electrical stimulation. 16th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society on Engineering Advances: New Opportunities for Biomedical Engineers. Baltimore, MD, IEEE. 1: 448-449.
Miller, R. A., M. H. Thaut, G. C. McIntosh and R. R. Rice (1996). "Components of EMG symmetry and variability in parkinsonian and healthy elderly gait." Electromyography and Motor Control-Electroencephalography and Clinical Neurophysiology 101(1): 1-7.
Moe-Nilssen, R. and J. L. Helbostad (2004). "Estimation of gait cycle characteristics by trunk accelerometry." Journal of Biomechanics 37(1): 121-126.
Moore, K. L., A. F. Dalley and A. M. R. Agur (2009). Clinically Oriented Anatomy, 6th Edition. Baltimore, MD, Lippincott Williams &; Wilkins.
84
Nakayama, H., H. Jørgensen, H. Raaschou and T. S. Olsen (1994). "Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study." Archives of Physical Medicine and Rehabilitation 75(4): 394-398.
O'Keeffe, D. T., D. H. Gates and P. Bonato (2007). A wearable pelvic sensor design for drop foot treatment in post-stroke patients, Lyon, France, IEEE Engineering in Medicine and Biology Society.
Patterson, K. K., W. H. Gage, D. Brooks, S. E. Black and W. E. McIlroy (2010). "Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization." Gait &; Posture 31(2): 241-246.
Patterson, K. K., I. Parafianowicz, C. J. Danells, V. Closson, M. C. Verrier, W. R. Staines, S. E. Black and W. E. McIlroy (2008). "Gait asymmetry in community-ambulating stroke survivors." Archives of Physical Medicine and Rehabilitation 89(2): 304-310.
Patterson, S. L., M. M. Rodgers, R. F. Macko and L. W. Forrester (2008). "Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: A preliminary report." Journal of Rehabilitation Research and Development 45(2): 221-228.
Perry, J., S. Thorofare and J. R. Davids (1992). "Gait analysis: normal and pathological function." Journal of Pediatric Orthopaedics 12(6): 815.
Plotnik, M., N. Giladi, Y. Balash, C. Peretz and J. M. Hausdorff (2005). "Is freezing of gait in Parkinson's disease related to asymmetric motor function?" Annals of Neurology 57(5): 656-663.
Robinson, R. O., W. Herzog and B. M. Nigg (1987). "Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry." Journal of Manipulative and Physiological Therapeutics 10(4): 172-176.
Roth, E. J., C. Merbitz, K. Mroczek, S. A. Dugan and W. W. Suh (1997). "Hemiplegic gait - Relationships between walking speed and other temporal parameters." American Journal of Physical Medicine &; Rehabilitation 76(2): 128-133.
Sadeghi, H., P. Allard, F. Prince and H. Labelle (2000). "Symmetry and limb dominance in able-bodied gait: a review." Gait &; Posture 12(1): 34-45.
Sant'Anna, A., A. Salarian and N. Wickstrom (2011). "A new measure of movement symmetry in early Parkinson's disease patients using symbolic processing of inertial sensor data." IEEE Transactions on Biomedical Engineering 58(7): 2127-2135.
Sant'Anna, A. and N. Wickstrom (2010). "A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry." IEEE Transactions on Information Technology in Biomedicine 14(5): 1180-1187.
Shorter, K. A., J. D. Polk, K. S. Rosengren and E. T. Hsiao-Wecksler (2008). "A new approach to detecting asymmetries in gait." Clinical Biomechanics 23(4): 459-467.
Terrier, P., O. Deriaz, A. Meichtry and F. Luthi (2009). "Prescription footwear for severe
85
injuries of foot and ankle: Effect on regularity and symmetry of the gait assessed by trunk accelerometry." Gait &; Posture 30(4): 492-496.
Thaut, M. H., G. C. McIntosh and R. R. Rice (1997). "Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation." Journal of the Neurological Sciences 151(2): 207-212.
Thiesemann, R., W. vonRentelnKruse, W. Meins, B. Tuschick, J. Vogel and H. P. MeierBaumgartner (1997). "Sensitivity of Tinetti's balance and gait assessment in geriatric hospital patients - aspects of clinical relevance and quality assurance." Zeitschrift fur Gerontologie und Geriatrie 30(4): 281-288.
Tinetti, M. E. (1986). "Performance-oriented assessment of mobility problems in elderly patients." Journal of the American Geriatrics Society 34(2): 119-126.
Tong, K. Y. and M. H. Granat (1999). "A practical gait analysis system using gyroscopes." Medical Engineering &; Physics 21(2): 87-94.
Tura, A., M. Raggi, L. Rocchi, A. G. Cutti and L. Chiari (2010). "Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations." Journal of NeuroEngineering and Rehabilitation 7(4).
Tura, A., L. Rocchi, M. Raggi, A. G. Cutti and L. Chiari (2012). "Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis." Journal of NeuroEngineering and Rehabilitation 9(11).
Twitchell, T. E. (1951). "The restoration of motor function following hemiplegia in man." Brain 74(4): 443-480.
White, R., I. Agouris, R. D. Selbie and M. Kirkpatrick (1999). "The variability of force platform data in normal and cerebral palsy gait." Clinical Biomechanics 14(3): 185-192.
Yang, C. C., Y. L. Hsu, K. S. Shih and J. M. Lu (2011). "Real-time gait cycle parameter recognition using a wearable accelerometry system." Sensors 11(8): 7314-7326.
Yang, M., H. Zheng, H. Wang, S. McClean and D. Newell (2012). "iGAIT: An interactive accelerometer based gait analysis system." Computer Methods and Programs in Biomedicine 108(2): 715-723.
Yang, Y. R., J. G. Yen, L. L. Yen and F. K. Lieu (2005). "Gait outcomes after additional backward walking training in patients with stroke: a randomized controlled trial." Clinical Rehabilitation 19(3): 264-273.
Zifchock, R. A., I. Davis, J. Higginson and T. Royer (2008). "The symmetry angle: a novel, robust method of quantifying asymmetry." Gait &; Posture 27(4): 622-627.
Zijlstra, W. (2004). "Assessment of spatio-temporal parameters during unconstrained walking." European Journal of Applied Physiology 92(1-2): 39-44.
Zimbelman, J., J. J. Daly, K. L. Roenigk, K. Butler, R. Burdsall and J. P. Holcomb (2012). "Capability of 2 gait measures for detecting response to gait training in stroke survivors: gait assessment and intervention tool and the Tinetti gait scale." Archives of Physical Medicine and Rehabilitation 93(1): 129-136.
86
李佳宜, 吳菁宜, 連倚南, 許美慧 and 林克忠 (2006). "改良式侷限誘發動作治療對於腦中風病人之復健成效." 臺灣醫學 10(4): 429-437.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊