跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李秉學
研究生(外文):Ping Hsueh LI
論文名稱:鑽石磨粒篩分運動型態與過篩分析之研究
論文名稱(外文):Analysis of Movement Types and Screening Efficiency for Diamond Grit under Different Ultrasonic Vibration Parameters
指導教授:蔡明義蔡明義引用關係
指導教授(外文):Ming Yi Tsai
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:單顆磨粒鑽石篩分晶形
外文關鍵詞:Single grainDiamondsScreeningCrystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
篩選分級方式仍為目前工業科技中不可或缺的關鍵技術,磨粒粒徑分佈亦是決定品質的關鍵。以化學機械拋光(Chemical mechanical polishing or planarization;CMP)所使用的鑽石修整器為例,鑽石磨粒尖點分佈,對拋光品質有決定性的影響。因此本研究針對鑽石晶形於不同振幅、頻率、通過率以及通過時間和磨粒運動型態進行分析,並且亦探討多顆磨粒篩分與單顆磨粒進行交叉比對。實驗結果顯示,單顆磨粒外形越不完整,其過篩率有下降趨勢,另外亦發現由於其接觸面積增加以及不規則的接觸面,易造成磨粒堵塞於篩孔及跳離篩孔的情形。在多顆磨粒方面,實驗顯示磨粒易產生團聚現象。其中磨粒越小,其團聚現象更為明顯,進而造成過篩率下降。此外高頻篩分具有高速且連續性的振動,因此低振幅即可改變磨粒運動型態,且有效降低磨粒與篩孔間的摩擦力,進而提高篩分效率;低頻篩分由於振幅頻率不高,屬於間斷性的振動,雖然可以將堵塞的磨粒瞬間振動跳離篩孔,然而因磨粒易彈跳,增加篩分時間。實驗亦發現磨粒篩分運動型態以停滯、旋轉以及跳動為主。除此之外,破碎晶形易堵塞篩網,建議使用低頻間斷性高振幅的篩分設備。而完整晶形之磨粒,建議使用高頻低振幅的篩分設備,有效減少篩分時間及提升篩分效率。
Screening classification is a key technique for the industry. For instance, diamond grits leveling for diamond disk can affect markedly the wafer performance. This paper presents analysis of movement types and screening efficiency for diamond grit under different ultrasonic vibration parameters. The experimental results show that screening rate of broken diamond grit reduces due to increase of contact area leading to diamond grits to build up on the mesh or running out to the mesh. The screening of multi-diamond grits shows easily aggregated to decrease screening rate. It is found that high frequency screening equipment has high velocity and continuous vibration, so using low amplitude only can change the grits movement type and decrease between grit and mesh friction effectively to increase screening efficiency. Low frequency screening equipment has low amplitude and discontinuity vibration, although it can reduce build up on the mesh, the screening times increase due to the grit easily jumping. The experimental results also show that the screening movement types include stagnation, rotation, and jumping. In summary broken diamond grits is easily to lock on the mesh, suggesting using low frequency with high amplitude screening equipment. The complete diamond grits can use high frequency with low amplitude screening equipment due to that it can reduce screening passing times and enhance screening efficiency.
誌謝 I
摘 要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 導論 1
1.1 前言 1
1.2研究動機與目的 3
1.3文獻回顧 5
1.4 論文架構 8
第二章 實驗相關理論與材料介紹 10
2.1篩選分級理論 10
2.1.1一階速率定律 11
2.1.2過篩率推導 13
2.1.3粒徑分布分析 14
2.2超音波驅動原理 16
2.2.1壓電概論 16
2.2.2壓電現象 17
2.2.3壓電材料 18
2.2.4壓電材料重要參數 18
2.3加速度規 20
2.3.1壓阻式加速度規: 21
2.3.2壓電式加速度規基本原理 21
2.3.3電容式加速度規 23
2.4磨料介紹 24
2.4.1人工鑽石磨粒 26
2.4.2碳化矽磨粒 ( SiC ) 27
第三章 實驗設備與規劃 29
3.1實驗設備 29
3.1.1超音波振篩機 29
3.1.2振動篩分機 31
3.2量測設備 32
3.3實驗規劃與步驟 35
3.3.1單顆鑽石磨粒 36
3.3.2多顆鑽石及碳化矽磨粒 40
3.3.3實驗步驟 42
第四章 結果與討論 44
4.1單顆人工鑽石磨粒篩分 44
4.1.1高頻時振幅與過篩情形 44
4.1.2低頻時振幅與過篩情形 46
4.1.3單顆鑽石磨粒篩分晶形分析 48
4.1.4單顆鑽石磨粒篩分運動型態分析 49
4.1.5小結 53
4.2多顆人工鑽石篩分 53
4.2.1高低頻篩分其振幅大小差異性 54
4.2.2高低頻篩分其篩分時間差異 54
4.2.3高頻篩磨其振幅與磨粒顆粒大小影響 55
4.2.4低頻篩磨其振幅與磨粒顆粒大小影響 56
4.2.5磨粒加熱進行篩分實驗 58
4.2.6小結 60
4.3 GC400碳化矽篩分 61
第五章 結論 66
第六章 未來展望 68
參考文獻 69


[1] R. Utsumi, T. Hata, T. Hirano, H. Mori, J. Tsubaki and T. Maeda, 2001, “Attrition testing of, granules with a tapping sieve”, Powder Technol, Vol. 119, pp.128-133.
[2] J. T. Jenkins and S. B. Savage, 1983, “A theory for rapid flow of identical,smooth, nearly elastic spherical particles”, Journal Fluid Mech, Vol 130, pp.187-202.
[3] H. Pitsch, 2005, “The basic priciples of sieve analysis”, GIT Lab. J. 9, pp.16-21.
[4] K. S. Liu, 2009, “Some factors affecting sieving performance and efficiency”, Powder Technol, Vol. 193, pp.208-213.
[5] 呂維明和戴怡德,1998,「粉粒體粒徑量測技術」,高立圖書有限公司。
[6] H. Abou-chakra, U. Tuzun, I. Bridle, M. Leaper, 2003, “Assessing the potential of a fine powder to segregate using laser diffraction and sieve particle size measuring techniques”, Advanced Powder Technology, Vol. 14, pp.167-176.
[7] 洪珮文,2002,化學機械研磨中鑽石修整器特性之研究,國立台灣大學機械工程學研究所碩士論文。
[8] 楊琦婷,2002,化學機械研磨中鑽石修整器磨耗之研究,國立台灣大學機械工程學研究所碩士論文。
[9] T. Namola, 1998, “Conditioning Tool Specifications”, ATI Internal Report, pp.9-19.
[10] L. Mc Cabe WarrenL, C. S. Julian, 1976, “Harriot P., Unit Operations Chemical Engineering”,東華書局.
[11] J. Li, C. Webb, S. S. Pandiella and G. M. Campbell, 2003, “Discrete Particle Motion on Sieve. A Numerical Study Using the DEM Simulation”, Powder Technology, Vol. 133, pp.190-202.
[12] V. Grozubinsky, E. Sultanovitch and I. J. Lin, 1998, “Efficiency of solid particle screening as a function of screen slot size, particle size, and duration of screening-The theoretical approach”, Inter. J. Mineral Proc, Vol. 52, pp.261-272.
[13] H. Alkhaldi and P. Eberhard, 2007,“Particle screening phenomena in an oblique multi-level tumbling reservoir: a numerical study using discrete element simulation”, Granul. Matter, Vol. 9, pp.415-429.
[14] M. L. Jansen and J. R. Glastonbury, 1967, “The size separation of particles by screening”, Powder Technol, Vol 1, pp.334-343.
[15] N. Standish, 1985, “The kinetics of batch sieving”, Powder Technol, Vol. 41, pp.57-67.
[16] H. Hartmann, T. Bohm, P. D. Jensen, M. Temmerman, F. Rabier and M. Golser, 2006, “Methods for size classification of wood cjips”, Biomass and Bioenergy, Vol. 30, pp.944-953.
[17] N. Standish and I. A. Meta, 1985, “Some kinetic aspects of continuous screening”, Powder Technol, Vol. 41, pp.165-171.
[18] I. Bodziony6, 1960, “On a certain hypothesis concerning the process of screening of granular bodies”, Bull. Acad. Pol. Sci, Vol. 8, pp. 99-10.
[19] B. H. Kaye, 1962, “Investigation into the possibities of developing a rate method of sieve analysis”, Powder Metall, Vol. 10, pp.199-217.
[20] G. K. N. S. Subasinghe,W. Schaao and E. G. Kelly, 1989,” Modeling the screening process: A probabilistic approach”, Powder Technol, Vol. 59, pp. 37-44.
[21] V. Grozubinsky,S. Efim and I. J. Lin, 1998, “Efficiency of Solid Particle Screening As A Funcion of Screen Slot Size, Particle Size, and Duration of Screening-The theoretical Approach”, Int. J. Miner. Process, Vol. 52, pp. 261-272.
[22] M. Soldinger, 2000, “Influence of particle size and bed thickness on the screening process”, Minerals Eng, Vol. 13, pp.297-312.
[23] J. Li,C. Webb,S. S. Pandiella and G. M. Campbell, 2002, “Anumerical simulation of separation of crop seeds by screening-effect of particle bed depth”, Trans. IChemE, Vol. 80, pp. 109-117.
[24] 三輪茂雄和日高重助,1984,「粉體工學」,復漢出版社。
[25] 魏維新,1997,「環境污染學」,合計圖書出版社。
[26] J. C. Williams, 1976, “The Segregation of Particulate Materials-a Review. Powder Tech”, Vol. 15, pp.245-251.
[27] M. B. Donald and B. Roseman, 1962, “Mixing and Demixing of Solid Particles. Part 1. Mechanisms in a Horizontal Drum Mixer”, Br.Chem. Eng., Vol. 7, pp.749-752.
[28] L. R. Lawrence,J. K. Beddow, 1969, “Powder Segregation During Die Filling , Powder Technol, Vol. 2, pp.253-259.
[29] H. Abou-Chakra, U. Tuzun, I. Bridle, M. Leaper, M. S. A. Bradley and A. R. Reed, 2003, “Assessing the potential of a fine powder to segregate using laser diffraction and sieve particle size measuring techniques“, Powder Technol, Vol. 14, pp.167-176.
[30] G. Eshel, G. J. Levy, U. Mingelgrin and M. J. Singer, 2004, “Critical evaluation of the use of laser diffraction for particle-size distribution analysis”, Soil Sci. Soc. Am. J. , Vol. 68, pp.736-743.
[31] G. J. Rodriguez and A. Uriarte, 2009, “Laser diffraction and dry-sieving grain size analyses undertaken on fine- and medium-grained sandy marine sediments: a note”, J. Coastal Res, Vol. 25, pp.257-264.
[32] J. M. R. Fernlund, 1998, “The effect of particle form on sieve analysis: a test by image analysis”, Eng. Geol, Vol. 50, pp.111-124.
[33] C. W. Liao and Y. S. Tarng, 2009, “On-line automatic optical inspectionsystem for coarse particle size distribution”, Powder Technol, Vol. 189, pp.508-513.
[34] A. S. Dukhin, P. J. Goetz amd V. Hackley, 1998, “Modified log-normal particle size distribution in acoustic spectroscopy”, Colloids Surf. A, Vol. 138, pp.1-9.
[35] H. Pitsch, 2005, “The basic priciples of sieve analysis”, GIT Lab. J. 9, pp.16-21.
[36] K. S. Liu, 2009, “Some factors affecting sieving performance and efficiency”, Powder Technol, Vol. 193, pp.208-213.
[37] 經濟部標準檢驗局,2001,「粗細粒料篩析法」,中國國家標準CNS 486,A 3005。
[38] Y. Fang, D. K. Agrawal, D. M. Roy and R. Roy, 1995, “Ultrasonic sieving of fine, dry powders”, Am. Ceram. Soc. Bull., Vol. 74, pp.70-73.
[39] G. Saint-Lorant, P. Leterme, A. Gayot and M. P. Flament, 2007, “Influence of carrier on the performance of dry powder inhalers”, Int. J. Pham., Vol. 334, pp.85-91.
[40] F. Bath, 2003, “Solids Processing- Fine tuning sieve analysis for accurate particle size measurement”, Chem. Eng., Vol. 110, pp.33-36.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top