跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.170) 您好!臺灣時間:2025/12/01 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐亦澂
研究生(外文):Yi-Cheng Hsu
論文名稱:圓形可變樣板應用於眼睛張開程度偵測
論文名稱(外文):Circular Deformable Template Application in Eye Openness Detection
指導教授:張志永
指導教授(外文):Jyh-Yeong Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:45
中文關鍵詞:可變樣板瞳孔眼睛圓形
外文關鍵詞:Deformable TemplateiriseyeCircular
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
在許多交通事故中,疲勞駕駛導致意外發生的事件層出不窮。於駕駛環境下,使用不妨礙駕駛人的視訊設備,觀測駕駛者眼睛的狀況,以達成瞌睡偵測是最直接有效的。亦即,經由偵測人眼開闔狀態來判斷是否出現瞌睡情形是相當準確可靠之方法。在此篇論文中,我們以彩色CCD 攝影機做為影像輸入來源,經過膚色判定來區分出人臉區域,再以主成份分析法擷取出眼部區域,再利用圓形可變樣版搜尋此區域,找出瞳孔的位置並加以分析之,以此判定眼睛此時的張開狀態。經實驗證明,我們提出的方法於判定眼睛狀態的準確度相當高,將有助於提高昏睡偵測系統的成功率。
Sleepiness and driving is a dangerous combination, drowsy driving can be just as fatal. Accordingly, it is necessary to develop a drowsy driver awareness system. To avoid interrupting the driver, it is necessary to build a system under non-invasive and non-contact condition. Image process system suits to achieve such a request. Hence, it is
recommended to judge the drowsiness state by observing eye status of operators via eye video. In this thesis, we use a CCD camera as the image sources and use skin color map to segment skin region. Then we use PCA algorithm to find the eye region for circular template searching. The circular template will locate the iris region and finally we can analyze this region to classify the eye openness state. By numerical simulation, we have obtained a high accuracy on eye openness detection and it would be helpful for the drowsy detection system.
Contents

摘要 ……………………………………………………………………i
ABSTRACT ……………………………………………………………ii
ACKNOWLEDGEMENT ……………………………………………………iv
CONTENTS ………………………………………………………………v
LIST of FIGURES……………………………………………………vii
LIST of TABLES………………………………………………………vii

CHAPTER 1 INTRODUCTION ……………………………………………1

1.1 Motivation…………………………………………………………2
1.2 Face Segmentation…………………………………………………2
1.3 Eye Detection………………………………………………………4
1.4 Iris Extraction……………………………………………………4
1.5 Eye State Determination…………………………………………5
1.6 Thesis Outline……………………………………………………5

CHAPTER 2 FACE SEGMENTATION…………………………………………6

2.1 YCbCr Color Space…………………………………………………6
2.2 Face Segmentation Algorithm……………………………………7

CHAPTER 3 EYE DETECTION AND IRIS EXCTRATION…………………14

3.1 PCA Review…………………………………………………………14
3.2 Computation of Eigeneyes ……………………………………15
3.3 Representing Eyes onto This Basis…………………………17
3.4 Eye Region Recognition Using Eigeneyes……………………17
3.5 Using Deformable Template for Iris Extraction…………18
3.5.1 Intensity Field and Edge Field……………………………19
3.5.2 Anisotropic Diffusion………………………………………20
3.5.3 Circular Deformable Template………………………………24

CHAPTER 4 EYE STATE DETERMINATION………………………………28

4.1 Analyzing the Iris Region……………………………………28
4.2 Determining Eye State…………………………………………30
4.3 Drowsy State Detection………………………………………32

CHAPTER 5 EXPERIMENT RESULT………………………………………34

5.1 Exper iment Setting..…………………………………………34
5.2 Exper iment Result..…………………………………………35

CHAPTER 6 CONCLUSIONS AND FUTURE WORK……………………… 42

REFERENCES ……………………………………………………………43
References
[1] A. Yuille, P. Hallinan, and D. Cohen, “Feature Extraction from Faces Using Deformable Templates,” International Journal of Computer Vision, vol. 8, no. 2, pp. 399–111, 1992.

[2] J. Deng and F. Lai, “Region-Based Template Deformation and Masking for Eye-feature Extraction and Description,” Pattern Recognition, vol. 30, no. 3, pp. 403–419, March 1997.

[3] W.W Weirwille., “Overview of Research on Driver Drowsiness Definition and Driver Drowsiness Detection,” in Proc. 14th International Technical Conference on Enhanced Safety of Vehicles, pp. 23-26, Munich, Germany, May, 1994.

[4] E. Hjelmas and B. K. Low, “Face detection: A survey,” Computer Vision and Image Understanding, vol. 83, pp. 236–274, 2001.

[5] R. Feraud, O. J. Bernier, J. Viallet, and M. Collobert, “A Fast and Accurate Face Detector. Based on Neural Networks,” IEEE Trans. Patt. Anal. Machine Intell., vol.
23, no. 1, January 2001.

[6] D. Maio and D. Maltoni, “Real-time face location on gray-scale static images,”Pattern Recognition, vol. 33, pp. 1525–1539, 2000.

[7] C. Garcia and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis.” IEEE Trans. Multimedia, vol. 1, no. 3, pp.
264-277, 1999.

[8] H. Wu, Q. Chen, and M. Yachida, “Face detection from color images using a fuzzy pattern matching method,” IEEE Trans. Patt. Anal. Machine Intell., vol. 21, pp. 557–563, 1999.

[9] H. Rowley, S. Baluja, T. Kanade, “Neural network-based face detection.” IEEE Trans. Patt. Anal. Machine Intell., vol. 20, no. 1, pp. 23-38, 1998.

[10] K. Sung and T. Poggio, “Example-based learning for view based human face detection. ” IEEE Trans. Patt. Anal. Machine Intell., vol. 20, no. 1, 39-51, 1998.

[11] M. Yang and N. Ahuja, “Detecting human faces in color images.” in Proc. IEEE Conference on Image Processing, Chicago, pp. 127-139, 1998.

[12] A. Colmenarez and T. Huang, “Face Detection with Information-Based Maximum Discrimination.” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PuertoRico, 782–787, 1997.

[13] K.C. Yow and Cipolla, “Feature-Based Human Face Detection,” Technical Report CUED/F-INFENG, TR 249, Dept. of Eng., Univ. of Cambridge, England, 1996.

[14] M. S. Lew and N. Huijsmans, “Information Theory and Face Detection,” in Proc. 13th International Conference on Pattern Recognition (ICPR'96), Vol. 3, pp.601, 1996.

[15] G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowski, “Classifying facial actions,” IEEE Trans. Patt. Anal. Machine Intell., vol. 21, no. 10, pp.
974–989, October 1999.

[16] J. Huang and Y. Wang, “Compression of color facial images using feature correction two-stage vector qantization Image Processing,” IEEE Trans. Image Processing,Vol 8, no. 1, pp. 102–109, Jan. 1999.

[17] D. Chai and K. N. Ngan, “Face segmentation using skin-color map in videophone applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 551–564, 1999.

[18] T. Kurozumi, Y. Shinza, Y. Kenmochi, and K. Kotani, “Facial individuality and expression analysis by eigenspace method based on class features or multiple
discriminant analysis,” in Proc. International Conference on Image Processing, vol. 1, pp. 648–652, 1999.

[19] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 19, pp. 743–756, 1997.

[20] L. H. Staib and J. S. Duncan, “Boundary finding with parametrically deformable models, ” IEEE Trans. Patt. Anal. Machine Intell., vol. 14, no. 11, pp. 1061–1075, 1992.

[21] M. P. D. Jolly, S. Lakshmanan, and A. K. Jain, “Vehicle segmentation and classification using de-formable templates,” IEEE Trans. Patt. Anal. Machine Intell.,
vol. 18, no. 3, pp. 293–308, 1996.

[22] Harris and M. Stephens, “A combined corner and edge detector,” in Proc. 4th Alvey Vision Conference, pp. 147–151, 1988.

[23] Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion,”IEEE Trans. Pattern Anal. Machine Intell., vol. 12, no. 7, pp. 629–639, July 1990.

[24] Canny, “A computational approach to edge detection,” IEEE Trans. Patt. Anal. Machine Intell., vol. 8, no. 6, pp. 679–698, Nov. 1986.

[25] T. Moriyama, T. Kanade, J. Xiao, and J. Cohn, “Meticulously Detailed Eye Region Model and Its Application to Analysis of Facial Images,” IEEE Trans. Patt. Anal. Machine Intell., vol. 28, no. 5, pp.738–752, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王灝:〈不只是鄉音—試論向陽的方言詩〉,《文訊月刊》19期(1985年8月),頁196-210。
2. 向陽:〈七○年代現代詩風潮試論〉,《文訊月刊》12期(1984年6月)。收錄於林燿德編《當代台灣文學評論大系(2)•文學現象卷》,台北:正中書局,1993年5月初版,頁351-356。
3. 宋澤萊:〈林宗源、向陽、宋澤萊、林央敏、黃樹根、黃勁連影響下的兩條臺語詩路線——閱讀「臺語詩六家選」有感〉收錄於《臺灣新文學》第11期(1997年12月),頁272-280。
4. 林于弘:〈臺語詩中的反諷世界:以向陽的《土地的歌》為例〉,《臺灣詩學季刊》33期(2000年12月),頁138-152。
5. 林淇瀁:〈從民間來、回民間去:以臺語詩集《土地的歌》為例論民間文學語言的再生〉,《臺灣詩學季刊》33期(2000年12月),頁121-137。
6. 林燿德:〈陽光的無限軌跡──有關向陽詩集《歲月》〉,《文訊月刊》19期(1985年8月),頁211-220。
7. 洛夫:〈新節奏的誕生—-讀向陽詩集《種籽》雜記〉,《文藝月刊》133期(1980年7月),頁44-55。
8. 高大鵬:〈一種美典的完成〉,《聯合文學》第1期(1984年11月1日),「責任書評」專欄,頁212。
9. 游喚:〈十行斑點,巧構形似──評介向陽新詩《十行集》〉,《文訊月刊》19期(1985年8月),頁185-195。
10. 楊子澗:〈期待新格律詩時代的到來──我讀向陽的《十行集》〉,《文訊月刊》15期(1985年2月),頁103-114。
11. 鄭明娳:〈鍛接的鋼——論現代詩中古典素材的運作〉,《文訊》第25期(1986年8月),頁56-75。