跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/14 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾泓瑞
研究生(外文):Tseng, Hung-Ruei
論文名稱:奈米尺度之太陽能電池之數值分析
論文名稱(外文):Numerical Study of Nano-scale Solar cell
指導教授:林建中林建中引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:54
中文關鍵詞:太陽能電池
外文關鍵詞:solar cellnano-scale solar cellnumerical analysisanalytic analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米尺度太陽能電池在近期太陽能電池發展中因許多新物理概念及應用的加入被視為達成高效率元件的新發展目標。以往較薄的太陽能電池因吸收長度較短,使得不少能量在傳遞的過程中散失,造成其效率較傳統的太陽能電池相對較低。但在電漿效應、光的捕捉等許多新的設計加入其中後,使奈米太陽能電池可以達到更高的表現,加上新的製程技術可以降低基板的損耗及較薄的電池可減少材料的使用,使得奈米尺度太陽能電池在未來的發展中展現十足的潛力。
我們利用Matlab軟體建立數值模型。對一般較大尺度的元件我們採用基本半導體公式進行模擬,成功的分析了我們再p-i-n結構中的本質層的漸變及陡變能隙的設計。在奈米尺度結構中,部份基本公式已不再適用,利用更一般性的物理描述,我們建立了新的模擬平台。利用此數值分析模型,奈米尺度太陽能電池的特性得以被研究。

Capter1. Introduction 1
1-1 The purpose of develop renewable resource 1
1-2 Obstacles in solar cell progress 1
Capter2. Nano-scale p-n junction solar cell 3
2-1 Motivation 3
2-2 Theory 4
2-2-1 Basic device physics 4
2-2-2 Transmission matrix method 9
2-2-3 Transport phenomena and electrical properties 11
2-2-4 Singular perturbation theory 14
Capter3. Modeling process of solar cell 18
3-1 Simulation platform 18
3-1-1 Matlab 18
3-2 Building blocks of Matlab code 19
3-2-1 Process flow of Matlab 20
3-2-2 Mesh defining 23
3-2-3 Governing Equations used in singular perturbation theory 27
3-2-4 Convergence improving strategy 33
Capter4. Simulation Result 37
4-1 Simulation of a graded and abrupt heterojunction solar cell 37
4-2 Simulation of nano-scale p-n junction solar cell 42
4-3 Relationship between Mesh distribution and initial guess 48
Capter5. Summary and future work 50
Reference 52

[1] National Center for Photovoltaics (NREL) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[2] M. A. Green, Third generation photovoltaics: advanced solar energy conversion vol. 12: Springer, 2006.
[3] D. A. Neamen and B. Pevzner, Semiconductor physics and devices: basic principles vol. 3: McGraw-Hill New York, 2003.
[4] J. Nelson, The physics of solar cells vol. 57: World Scientific, 2003.
[5] V. M. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. J. Touryan, "Quantum dot solar cells," in International Symposium on Optical Science and Technology, 2001, pp. 38-45.
[6] T. Ming-Hsuan, T. Hung-Ruei, L. Yen-Hua, H. Shun-Chieh, T. Che-Pin, and L. Chien-Chung, "Numerical study of graded bandgap solar cells," in Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, 2013, pp. 1914-1918.
[7] M.-H. T. Hung-Ruei Tseng, Yen-Hua Lo, Shun-Chieh Hsu, Che-Pin Tsai, Chien-Chung Lin, "Numerical study of SiGe graded bandgap solar cell," presented at the International Photovoltaic Science and Engineering Conference, 2013.
[8] P. Markowich, C. Ringhofer, and C. Schimeiser, Semiconductor: Springer, 1990.
[9] U. Aeberhard, "Simulation of Nanostructure-Based High-Efficiency Solar Cells: Challenges, Existing Approaches, and Future Directions," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, pp. 1-11, 2013.
[10] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of applied physics, vol. 32, pp. 510-519, 1961.
[11] S. Mokkapati and K. Catchpole, "Nanophotonic light trapping in solar cells," Journal of applied physics, vol. 112, p. 101101, 2012.
[12] J. Buencuerpo, J. Llorens, M. Dotor, and J. Ripalda, "Photon management with nanostructures on concentrator solar cells," Applied Physics Letters, vol. 103, p. 083901, 2013.
[13] K. Lee, J. D. Zimmerman, Y. Zhang, and S. R. Forrest, "Epitaxial lift-off of GaAs thin-film solar cells followed by substrate reuse," in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 2012, pp. 001698-001700.
[14] L. A. Pettersson, L. S. Roman, and O. Inganas, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films," Journal of Applied Physics, vol. 86, pp. 487-496, 1999.
[15] M. Zeman, R. Van Swaaij, J. Metselaar, and R. Schropp, "Optical modeling of a-Si: H solar cells with rough interfaces: Effect of back contact and interface roughness," Journal of Applied Physics, vol. 88, pp. 6436-6443, 2000.
[16] C.-C. Lin, H.-C. Chen, Y. L. Tsai, H.-V. Han, H.-S. Shih, Y.-A. Chang, et al., "Highly efficient CdS-quantum-dot-sensitized GaAs solar cells," Optics express, vol. 20, pp. A319-A326, 2012.
[17] J. E. Sutherland and J. R. Hauser, "A computer analysis of heterojunction and graded composition solar cells," Electron Devices, IEEE Transactions on, vol. 24, pp. 363-372, 1977.
[18] A. A. Grinberg, M. Shur, R. Fischer, and H. Morkoc, "An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors," Electron Devices, IEEE Transactions on, vol. 31, pp. 1758-1765, 1984.
[19] A.-A. S. Al-Omar, "The collection probability and spectral response in isotype heterolayers of tandem solar cells," Solid-state electronics, vol. 50, pp. 1656-1666, 2006.
[20] P. A. Markowich, "A singular perturbation analysis of the fundamental semiconductor device equations," SIAM Journal on Applied Mathematics, vol. 44, pp. 896-928, 1984.
[21] J. K. Hunter, "Asymptotic Analysis and Singular Perturbation Theory," Department of Mathematics, University of California at Davis, 2004.
[22] P. A. Markowich, C. A. Ringhofer, S. Selberherr, and M. Lentini, "A singular perturbation approach for the analysis of the fundamental semiconductor equations," Electron Devices, IEEE Transactions on, vol. 30, pp. 1165-1180, 1983.
[23] P. Szmolyan, "A singular perturbation analysis of the transient semiconductor device equations," SIAM Journal on Applied Mathematics, vol. 49, pp. 1122-1135, 1989.
[24] P. A. Markowich and C. A. Ringhofer, "A singularly perturbed boundary value problem modelling a semiconductor device," SIAM Journal on Applied Mathematics, vol. 44, pp. 231-256, 1984.
[25] C.-M. Ionescu, "MATLAB: a ubiquitous tool for the practical engineer," 2011.
[26] L. F. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with MATLAB: Cambridge University Press, 2003.
[27] Alta Devices (http://www.altadevices.com/pr-2013-03-04.php)
[28] J. Woodall and H. Hovel, "High‐efficiency Ga1− xAlxAs–GaAs solar cells," Applied Physics Letters, vol. 21, pp. 379-381, 1972.
[29] M. Konagai and K. Takahashi, "Graded‐band‐gap pGa1− xAlxAs‐nGaAs heterojunction solar cells," Journal of Applied Physics, vol. 46, pp. 3542-3546, 1975.
[30] J. A. Hutchby and R. L. Fudurich, "Theoretical analysis of AlxGa1− xAs‐GaAs graded band‐gap solar cell," Journal of Applied Physics, vol. 47, pp. 3140-3151, 1976.
[31] G. Brown, J. Ager III, W. Walukiewicz, and J. Wu, "Finite element simulations of compositionally graded InGaN solar cells," Solar Energy Materials and Solar Cells, vol. 94, pp. 478-483, 2010.
[32] E. Schubert, L. Tu, G. Zydzik, R. Kopf, A. Benvenuti, and M. Pinto, "Elimination of heterojunction band discontinuities by modulation doping," Applied physics letters, vol. 60, pp. 466-468, 1992.
[33] M. Ettenberg and H. Kressel, "Interfacial recombination at (AlGa) As/GaAs heterojunction structures," Journal of Applied Physics, vol. 47, pp. 1538-1544, 1976.
[34] X. Xu, T. Yamada, and A. Otomo, "Surface recombination in GaAs thin films with two-dimensional photonic crystals," Applied Physics Letters, vol. 92, p. 091911, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top