|
[1] National Center for Photovoltaics (NREL) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg [2] M. A. Green, Third generation photovoltaics: advanced solar energy conversion vol. 12: Springer, 2006. [3] D. A. Neamen and B. Pevzner, Semiconductor physics and devices: basic principles vol. 3: McGraw-Hill New York, 2003. [4] J. Nelson, The physics of solar cells vol. 57: World Scientific, 2003. [5] V. M. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. J. Touryan, "Quantum dot solar cells," in International Symposium on Optical Science and Technology, 2001, pp. 38-45. [6] T. Ming-Hsuan, T. Hung-Ruei, L. Yen-Hua, H. Shun-Chieh, T. Che-Pin, and L. Chien-Chung, "Numerical study of graded bandgap solar cells," in Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, 2013, pp. 1914-1918. [7] M.-H. T. Hung-Ruei Tseng, Yen-Hua Lo, Shun-Chieh Hsu, Che-Pin Tsai, Chien-Chung Lin, "Numerical study of SiGe graded bandgap solar cell," presented at the International Photovoltaic Science and Engineering Conference, 2013. [8] P. Markowich, C. Ringhofer, and C. Schimeiser, Semiconductor: Springer, 1990. [9] U. Aeberhard, "Simulation of Nanostructure-Based High-Efficiency Solar Cells: Challenges, Existing Approaches, and Future Directions," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, pp. 1-11, 2013. [10] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of applied physics, vol. 32, pp. 510-519, 1961. [11] S. Mokkapati and K. Catchpole, "Nanophotonic light trapping in solar cells," Journal of applied physics, vol. 112, p. 101101, 2012. [12] J. Buencuerpo, J. Llorens, M. Dotor, and J. Ripalda, "Photon management with nanostructures on concentrator solar cells," Applied Physics Letters, vol. 103, p. 083901, 2013. [13] K. Lee, J. D. Zimmerman, Y. Zhang, and S. R. Forrest, "Epitaxial lift-off of GaAs thin-film solar cells followed by substrate reuse," in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 2012, pp. 001698-001700. [14] L. A. Pettersson, L. S. Roman, and O. Inganas, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films," Journal of Applied Physics, vol. 86, pp. 487-496, 1999. [15] M. Zeman, R. Van Swaaij, J. Metselaar, and R. Schropp, "Optical modeling of a-Si: H solar cells with rough interfaces: Effect of back contact and interface roughness," Journal of Applied Physics, vol. 88, pp. 6436-6443, 2000. [16] C.-C. Lin, H.-C. Chen, Y. L. Tsai, H.-V. Han, H.-S. Shih, Y.-A. Chang, et al., "Highly efficient CdS-quantum-dot-sensitized GaAs solar cells," Optics express, vol. 20, pp. A319-A326, 2012. [17] J. E. Sutherland and J. R. Hauser, "A computer analysis of heterojunction and graded composition solar cells," Electron Devices, IEEE Transactions on, vol. 24, pp. 363-372, 1977. [18] A. A. Grinberg, M. Shur, R. Fischer, and H. Morkoc, "An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors," Electron Devices, IEEE Transactions on, vol. 31, pp. 1758-1765, 1984. [19] A.-A. S. Al-Omar, "The collection probability and spectral response in isotype heterolayers of tandem solar cells," Solid-state electronics, vol. 50, pp. 1656-1666, 2006. [20] P. A. Markowich, "A singular perturbation analysis of the fundamental semiconductor device equations," SIAM Journal on Applied Mathematics, vol. 44, pp. 896-928, 1984. [21] J. K. Hunter, "Asymptotic Analysis and Singular Perturbation Theory," Department of Mathematics, University of California at Davis, 2004. [22] P. A. Markowich, C. A. Ringhofer, S. Selberherr, and M. Lentini, "A singular perturbation approach for the analysis of the fundamental semiconductor equations," Electron Devices, IEEE Transactions on, vol. 30, pp. 1165-1180, 1983. [23] P. Szmolyan, "A singular perturbation analysis of the transient semiconductor device equations," SIAM Journal on Applied Mathematics, vol. 49, pp. 1122-1135, 1989. [24] P. A. Markowich and C. A. Ringhofer, "A singularly perturbed boundary value problem modelling a semiconductor device," SIAM Journal on Applied Mathematics, vol. 44, pp. 231-256, 1984. [25] C.-M. Ionescu, "MATLAB: a ubiquitous tool for the practical engineer," 2011. [26] L. F. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with MATLAB: Cambridge University Press, 2003. [27] Alta Devices (http://www.altadevices.com/pr-2013-03-04.php) [28] J. Woodall and H. Hovel, "High‐efficiency Ga1− xAlxAs–GaAs solar cells," Applied Physics Letters, vol. 21, pp. 379-381, 1972. [29] M. Konagai and K. Takahashi, "Graded‐band‐gap pGa1− xAlxAs‐nGaAs heterojunction solar cells," Journal of Applied Physics, vol. 46, pp. 3542-3546, 1975. [30] J. A. Hutchby and R. L. Fudurich, "Theoretical analysis of AlxGa1− xAs‐GaAs graded band‐gap solar cell," Journal of Applied Physics, vol. 47, pp. 3140-3151, 1976. [31] G. Brown, J. Ager III, W. Walukiewicz, and J. Wu, "Finite element simulations of compositionally graded InGaN solar cells," Solar Energy Materials and Solar Cells, vol. 94, pp. 478-483, 2010. [32] E. Schubert, L. Tu, G. Zydzik, R. Kopf, A. Benvenuti, and M. Pinto, "Elimination of heterojunction band discontinuities by modulation doping," Applied physics letters, vol. 60, pp. 466-468, 1992. [33] M. Ettenberg and H. Kressel, "Interfacial recombination at (AlGa) As/GaAs heterojunction structures," Journal of Applied Physics, vol. 47, pp. 1538-1544, 1976. [34] X. Xu, T. Yamada, and A. Otomo, "Surface recombination in GaAs thin films with two-dimensional photonic crystals," Applied Physics Letters, vol. 92, p. 091911, 2008.
|