跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周建良
研究生(外文):Jian-Liang Chou
論文名稱:TGF-β標的基因FBXO32 及 ABCA1 之表基因變異在卵巢癌所扮演的角色
論文名稱(外文):The Role of Aberrant Epigenetic Alteration of the TGF-β Targets FBXO32 and ABCA1 In Ovarian Cancer
指導教授:陳永恩陳永恩引用關係
指導教授(外文):Michael W Chan
口試委員:曾銘仁吳淑芬賴鴻政趙偉庭
口試委員(外文):Min-Jen TsengShu-Fen WuHung-Cheng LaiWei-Ting Chao
口試日期:2013-07-19
學位類別:博士
校院名稱:國立中正大學
系所名稱:分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:97
中文關鍵詞:卵巢癌TGF-β訊息傳遞表觀遺傳學DNA甲基化
外文關鍵詞:ovarian cancerTGF-β/SMAD4DNA methylationepigeneticFBXO32ABCA1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在卵巢癌中,TGF-β訊息傳遞扮演著非常重要的角色。失控的TGF-β訊息傳遞除了會導致卵巢癌的發生也會使癌症幹細胞的存活。在本篇研究中,我們利用ChIP-chip和expression array找出和TGF-β/SMAD4相關基因:FBXO32和ABCA1,並研究其跟卵巢癌的相關性。在第一部分研究中,我們發現在正常卵巢細胞中FBXO32為正常表現,但是在卵巢癌細胞株中卻被抑制。近一步研究顯示,FBXO32表現異常是因為在啟動子產生甲基化現象,所以利用表基因藥物可以減少甲基化情形以及讓FBXO32重新表現。利用FBXO32甲基化位置來分析病人檢體,發現有FBXO32的甲基化,卵巢癌病人呈現較高的復發機率(29.3%; P<0.05)。在卵巢癌細胞株中重新表現FBXO32可以有效誘導細胞凋亡,抑制癌細胞生長,並且降低癌細胞對cisplatin的抗性。再第二部份研究中,我們從mDIP-Chip中發現ABCA1在A2780和CP70癌細胞株中有甲基化現象,以及從expression data中也可以發現ABCA1表現被抑制。更進一步研究顯示,ABCA1的不表現是因為啟動子部位的甲基化。接著分析ABCA1甲基化跟病人檢體的關係,發現在高stage跟高grade病患中,ABCA1甲基化情形也比較高(P=0.0169 vs. P=0.0024)。而且ABCA1甲基化較高的病患,也較易死亡(P=0.016)。在卵巢癌細胞中,FBXO32和ABCA1皆被DNA甲基化所抑制表現,且產生甲基化的病患都有不佳的癒後表現。
The Dysregulation of TGF-β signaling plays a key role in ovarian carcinogenesis and maintaining cancer stem cell properties. In this study, we utilized previous ChIP-chip, mDIP-chip, and expression array data to identify TGF-β/SMAD4 relative genes: FBXO32 and ABCA1. In the first part of study, we found that expression of FBXO32 was observed in normal ovarian surface epithelium but not in ovarian cancer cell lines. FBXO32 methylation was seen in ovarian cancer cell lines, and epigenetic drug treatment restored FBXO32 expression in ovarian cancer cell lines, suggesting that epigenetic modifications regulate the expression of this gene in ovarian cancer. In advanced stage ovarian tumors, significant (29.3%; p<0.05) methylation frequency of FBXO32 was observed and the association between FBXO32 methylation and shorter progression free survival was significant (Kaplan-Meier, p<0.05). Re-expression of FBXO32 markedly reduced proliferation of ovarian cancer line both in vitro and in vivo, due to increased apoptosis of the cells, and resensitized ovarian cancer cells to cisplatin. In the second part of the study, we identified ABCA1 by mDIP-Chip which was methylated in ovarian cancer cell line, A2780 and CP70. ABCA1 was expressed not only in IOSE, but in HeyC2, SKOV3, MCP3, and MCP2 ovarian cancer cell lines. In A2780 and CP70 ovarian cancer cell line, ABCA1 was down-regulated and was associated with promoter hypermethylation as demonstrated by bisulfite pyro-sequencing. Analysis of ABCA1 methylation in 8 normal OSE and 76 ovarian cancer patient samples demonstrated that patients with higher ABCA1 methylation is associated with high stage and high grade (p=0.0169 vs. p=0.0024). Importantly, patients with higher methylation of ABCA1 have shorter progression free survival (p=0.09) and overall survival (p=0.016). In conclusion, both of FBXO32 and ABCA1 were repressed by DNA methylation in ovarian cancer, and hypermethylation of them was associated with poor prognosis in cancer patients.
致謝 - 1 -
摘要 - 2 -
Abstract - 3 -
Background review 6
Ovarian cancer 6
The TGF-β signaling pathway 8
Epigenetic modifications 9
Aberrant TGF-β signaling and epigenetic alteration in ovarian cancer 12
Hypothesis and Objective of study 13
PART I: Promoter hypermethylation of FBXO32, a novel TGF-β/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer 14
Material and Methods 14
Patient samples 14
Cell culture and epigenetic treatment 14
DNA extraction 14
Bisulfite conversion and Combined Bisulfite Restriction Analysis (COBRA) 15
Methylation specific PCR (MSP) and real time quantitative methylation-specific PCR (qMSP) 16
RNA extraction, reverse transcription and quantitative reverse transcription-PCR 17
Plasmid construction 18
Transfection and colony formation assay 18
Cell proliferation assay 19
Flow cytometry analysis 19
In vivo tumorigenicity assay 20
Immunohistochemistry 20
Statistical analysis 21
Results 22
PART II: Hypermethylation of a TGF- target, ABCA1 is associated with poor prognosis in ovarian cancer patients 27
Material and Methods 27
Patient samples 27
Cell culture 27
DNA extraction, RNA extraction and reverse transcription 27
Quantitative reverse transcription-PCR 27
Bisulfite conversion and pyro-sequencing 28
Statistical analysis 28
Results 30
Conclusion and Discussion 32
Figure and Table 38
Fig 1 38
Fig 2 40
Fig 3 41
Fig 4 43
Fig 5 44
Fig 6 46
Fig 7 50
Fig 8 52
Fig 9 55
Fig 10 58
Fig 11 59
Fig 12 61
Fig 13 64
Table 1. Summary of clinico-pathological data of 96 ovarian cancer patients 65
Table 2 Primer sequences used in the study 66
Table 3. Effect of FBXO32 on cell cycle distribution of HeyC2 cells 67
Table 4. Association between methylation of FBXO32 and clinicopathological features of 96 ovarian cancer patients 68
Table 5. Multivariate analysis of survival by Cox proportional hazards model 69
Table 6. Summary of clinico-pathological data of 76 ovarian cancer patients 70
Table 7. Association between methylation of ABCA1 and clinicopathological features of 76 ovarian cancer patients 71
Table 8. Univariable analysis of survival by Cox proportional hazards model 72
Table 10 Media Formulations of ovarian cancer cell lines 73
Appendix 74
Original data methylation of FBXO32 and clinical pathological parameters in ovarian cancer patient samples 74
Original data: methylation of ABCA1 and clinical pathological parameters in ovarian cancer patient samples 78
A: pyro-sequencing data of ABCA1 79
Publications 87
References 88
1.Wakabayashi, MT, Lin PS and Hakim AA (2008). "The role of cytoreductive/debulking surgery in ovarian cancer." J Natl Compr Canc Netw 6(8): 803-810; quiz 811.
2.Nilsson, EE and Skinner MK (2002). "Role of transforming growth factor beta in ovarian surface epithelium biology and ovarian cancer." Reprod Biomed Online 5(3): 254-258.
3.Hu, W, Wu W, Nash MA, Freedman RS, Kavanagh JJ and Verschraegen CF (2000). "Anomalies of the TGF-beta postreceptor signaling pathway in ovarian cancer cell lines." Anticancer Res 20(2A): 729-733.
4.Simon, JA and Lange CA (2008). "Roles of the EZH2 histone methyltransferase in cancer epigenetics." Mutat Res 647(1-2): 21-29.
5.Mulero-Navarro, S and Esteller M (2008). "Epigenetic biomarkers for human cancer: the time is now." Crit Rev Oncol Hematol 68(1): 1-11.
6.(2007). "Abstracts from the ACOG (American College of Obstetricians and Gynecologists) 55th Annual Clinical Meeting. May 5-9, 2007. San Diego, California, USA." Obstet Gynecol 109(4 Suppl): 1S-127S.
7.Aletti, GD, Gallenberg MM, Cliby WA, Jatoi A and Hartmann LC (2007). "Current management strategies for ovarian cancer." Mayo Clin Proc 82(6): 751-770.
8.Goff, BA, Mandel LS, Drescher CW, Urban N, Gough S, Schurman KM, et al. (2007). "Development of an ovarian cancer symptom index: possibilities for earlier detection." Cancer 109(2): 221-227.
9.Gershenson, DM (1994). "Management of early ovarian cancer: germ cell and sex cord-stromal tumors." Gynecol Oncol 55(3 Pt 2): S62-72.
10.Chan, JK, Tian C, Monk BJ, Herzog T, Kapp DS, Bell J, et al. (2008). "Prognostic factors for high-risk early-stage epithelial ovarian cancer: a Gynecologic Oncology Group study." Cancer 112(10): 2202-2210.
11.Lacey, JV, Jr., Greene MH, Buys SS, Reding D, Riley TL, Berg CD, et al. (2006). "Ovarian cancer screening in women with a family history of breast or ovarian cancer." Obstet Gynecol 108(5): 1176-1184.
12.Wolff, TA and Wilson JE (2006). "Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility." Am Fam Physician 74(10): 1759-1760.
13.Beral, V, Bull D, Green J and Reeves G (2007). "Ovarian cancer and hormone replacement therapy in the Million Women Study." Lancet 369(9574): 1703-1710.
14.Burger, RA (2007). "Experience with bevacizumab in the management of epithelial ovarian cancer." J Clin Oncol 25(20): 2902-2908.
15.Lacey, JV, Jr., Brinton LA, Leitzmann MF, Mouw T, Hollenbeck A, Schatzkin A, et al. (2006). "Menopausal hormone therapy and ovarian cancer risk in the National Institutes of Health-AARP Diet and Health Study Cohort." J Natl Cancer Inst 98(19): 1397-1405.
16.Beral, V, Doll R, Hermon C, Peto R and Reeves G (2008). "Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls." Lancet 371(9609): 303-314.
17.Fader, AN and Rose PG (2007). "Role of surgery in ovarian carcinoma." J Clin Oncol 25(20): 2873-2883.
18.Venter, JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (2001). "The sequence of the human genome." Science 291(5507): 1304-1351.
19.Patterson, GI and Padgett RW (2000). "TGF beta-related pathways. Roles in Caenorhabditis elegans development." Trends Genet 16(1): 27-33.
20.Yeh, KT, Chen TH, Yang HW, Chou JL, Chen LY, Yeh CM, et al. (2011). "Aberrant TGFbeta/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1 in ovarian cancer." Epigenetics 6(6): 727-739.
21.Chou, JL, Chen LY, Lai HC and Chan MW (2010). "TGF-beta: friend or foe? The role of TGF-beta/SMAD signaling in epigenetic silencing of ovarian cancer and its implication in epigenetic therapy." Expert Opin Ther Targets 14(11): 1213-1223.
22.Chan, MW, Huang YW, Hartman-Frey C, Kuo CT, Deatherage D, Qin H, et al. (2008). "Aberrant transforming growth factor beta1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer." Neoplasia 10(9): 908-919.
23.Feinberg, AP and Tycko B (2004). "The history of cancer epigenetics." Nat Rev Cancer 4(2): 143-153.
24.Jones, PA and Baylin SB (2007). "The epigenomics of cancer." Cell 128(4): 683-692.
25.Okano, M, Bell DW, Haber DA and Li E (1999). "DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development." Cell 99(3): 247-257.
26.Bernstein, BE, Meissner A and Lander ES (2007). "The mammalian epigenome." Cell 128(4): 669-681.
27.Fatemi, M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, et al. (2005). "Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level." Nucleic Acids Res 33(20): e176.
28.Muegge, K (2005). "Lsh, a guardian of heterochromatin at repeat elements." Biochem Cell Biol 83(4): 548-554.
29.Meissner, A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. (2008). "Genome-scale DNA methylation maps of pluripotent and differentiated cells." Nature 454(7205): 766-770.
30.Bird, A (2007). "Perceptions of epigenetics." Nature 447(7143): 396-398.
31.Widschwendter, M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, et al. (2007). "Epigenetic stem cell signature in cancer." Nat Genet 39(2): 157-158.
32.Laird, PW (2003). "The power and the promise of DNA methylation markers." Nat Rev Cancer 3(4): 253-266.
33.Chou, JL, Su HY, Chen LY, Liao YP, Hartman-Frey C, Lai YH, et al. (2010). "Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer." Lab Invest 90(3): 414-425.
34.(2008). "Moving AHEAD with an international human epigenome project." Nature 454(7205): 711-715.
35.Callinan, PA and Feinberg AP (2006). "The emerging science of epigenomics." Hum Mol Genet 15 Spec No 1: R95-101.
36.Kouzarides, T (2007). "Chromatin modifications and their function." Cell 128(4): 693-705.
37.Ruthenburg, AJ, Li H, Patel DJ and Allis CD (2007). "Multivalent engagement of chromatin modifications by linked binding modules." Nat Rev Mol Cell Biol 8(12): 983-994.
38.Birney, E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al. (2007). "Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project." Nature 447(7146): 799-816.
39.Jenuwein, T and Allis CD (2001). "Translating the histone code." Science 293(5532): 1074-1080.
40.Koch, CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, et al. (2007). "The landscape of histone modifications across 1% of the human genome in five human cell lines." Genome Res 17(6): 691-707.
41.Heintzman, ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. (2007). "Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome." Nat Genet 39(3): 311-318.
42.Edmunds, JW, Mahadevan LC and Clayton AL (2008). "Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation." EMBO J 27(2): 406-420.
43.Mikkelsen, TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. (2007). "Genome-wide maps of chromatin state in pluripotent and lineage-committed cells." Nature 448(7153): 553-560.
44.Bernstein, BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. (2006). "A bivalent chromatin structure marks key developmental genes in embryonic stem cells." Cell 125(2): 315-326.
45.Barski, A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. (2007). "High-resolution profiling of histone methylations in the human genome." Cell 129(4): 823-837.
46.Knauff, EA, Franke L, van Es MA, van den Berg LH, van der Schouw YT, Laven JS, et al. (2009). "Genome-wide association study in premature ovarian failure patients suggests ADAMTS19 as a possible candidate gene." Hum Reprod 24(9): 2372-2378.
47.Weng, YI, Hsu PY, Liyanarachchi S, Liu J, Deatherage DE, Huang YW, et al. (2010). "Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells." Toxicol Appl Pharmacol 248(2): 111-121.
48.Issa, JP (2004). "CpG island methylator phenotype in cancer." Nat Rev Cancer 4(12): 988-993.
49.Tan, J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, et al. (2007). "Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells." Genes Dev 21(9): 1050-1063.
50.Hanai, J, Cao P, Tanksale P, Imamura S, Koshimizu E, Zhao J, et al. (2007). "The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity." J Clin Invest 117(12): 3940-3951.
51.Stitt, TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. (2004). "The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors." Mol Cell 14(3): 395-403.
52.Moylan, JS, Smith JD, Chambers MA, McLoughlin TJ and Reid MB (2008). "TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxo1/3 signaling." Am J Physiol Cell Physiol 295(4): C986-993.
53.Frescas, D and Pagano M (2008). "Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer." Nat Rev Cancer 8(6): 438-449.
54.Lin, DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, et al. (2006). "Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex." Mol Cell 24(3): 355-366.
55.Fujii, Y, Yada M, Nishiyama M, Kamura T, Takahashi H, Tsunematsu R, et al. (2006). "Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation." Cancer Sci 97(8): 729-736.
56.Smith, B and Land H (2012). "Anticancer activity of the cholesterol exporter ABCA1 gene." Cell Rep 2(3): 580-590.
57.Laffitte, BA, Joseph SB, Walczak R, Pei L, Wilpitz DC, Collins JL, et al. (2001). "Autoregulation of the human liver X receptor alpha promoter." Mol Cell Biol 21(22): 7558-7568.
58.Jun, HJ, Hoang MH, Lee JW, Yaoyao J, Lee JH, Lee DH, et al. (2012). "Iristectorigenin B isolated from Belamcanda chinensis is a liver X receptor modulator that increases ABCA1 and ABCG1 expression in macrophage RAW 264.7 cells." Biotechnol Lett 34(12): 2213-2221.
59.Potter, VR (1958). "The biochemical approach to the cancer problem." Fed Proc 17(2): 691-697.
60.Dessi, S, Batetta B, Anchisi C, Pani P, Costelli P, Tessitore L, et al. (1992). "Cholesterol metabolism during the growth of a rat ascites hepatoma (Yoshida AH-130)." Br J Cancer 66(5): 787-793.
61.Kolanjiappan, K, Ramachandran CR and Manoharan S (2003). "Biochemical changes in tumor tissues of oral cancer patients." Clin Biochem 36(1): 61-65.
62.Li, AJ, Elmore RG, Chen IY and Karlan BY (2010). "Serum low-density lipoprotein levels correlate with survival in advanced stage epithelial ovarian cancers." Gynecol Oncol 116(1): 78-81.
63.Nieman, KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. (2011). "Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth." Nat Med 17(11): 1498-1503.
64.Osmak, M (2012). "Statins and cancer: current and future prospects." Cancer Lett 324(1): 1-12.
65.Gao, J, Jia WD, Li JS, Wang W, Xu GL, Ma JL, et al. (2010). "Combined inhibitory effects of celecoxib and fluvastatin on the growth of human hepatocellular carcinoma xenografts in nude mice." J Int Med Res 38(4): 1413-1427.
66.Kochuparambil, ST, Al-Husein B, Goc A, Soliman S and Somanath PR (2011). "Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression." J Pharmacol Exp Ther 336(2): 496-505.
67.Elmore, RG, Ioffe Y, Scoles DR, Karlan BY and Li AJ (2008). "Impact of statin therapy on survival in epithelial ovarian cancer." Gynecol Oncol 111(1): 102-105.
68.Scoles, DR, Xu X, Wang H, Tran H, Taylor-Harding B, Li A, et al. (2010). "Liver X receptor agonist inhibits proliferation of ovarian carcinoma cells stimulated by oxidized low density lipoprotein." Gynecol Oncol 116(1): 109-116.
69.Liu, H, Liang SL, Kumar S, Weyman CM, Liu W and Zhou A (2009). "Statins induce apoptosis in ovarian cancer cells through activation of JNK and enhancement of Bim expression." Cancer Chemother Pharmacol 63(6): 997-1005.
70.Martirosyan, A, Clendening JW, Goard CA and Penn LZ (2010). "Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance." BMC Cancer 10: 103.
71.Goldstein, JL and Brown MS (1990). "Regulation of the mevalonate pathway." Nature 343(6257): 425-430.
72.Brown, AJ (2007). "Cholesterol, statins and cancer." Clin Exp Pharmacol Physiol 34(3): 135-141.
73.Murtola, TJ, Syvala H, Pennanen P, Blauer M, Solakivi T, Ylikomi T, et al. (2012). "The importance of LDL and cholesterol metabolism for prostate epithelial cell growth." PLoS One 7(6): e39445.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊