跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭雅今
論文名稱:落花生癒合組織中類二苯乙烯化合物的誘導、分析及鑑定
論文名稱(外文):Induction, analysis and identification of stilbenoids in callus of peanut(arachis hypogaea L.)
指導教授:張平順古國隆
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:91
語文別:中文
中文關鍵詞:stilbenoidspeanut callus
相關次數:
  • 被引用被引用:4
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究之目的是利用組織培養生產落花生癒合組織(callus)後,再以紫外線及其他物理性處理誘導類二苯乙烯化合物的產生。在此同時建立一套適用於分析鑑定落花生癒合組織中類二苯乙烯化合物之方法。本研究包括三部分,第一部份:為建立一套適用於落花生癒合組織的分析方法,雖然目前已有許多分析類二苯乙烯化合物之文獻,但並無適用於分析落花生癒合組織之方法,因此本研究發展出分析落花生癒合組織之方法,其主要條件以C18 管柱作為分離管柱,以乙腈及水(以甲酸調整pH值至2.1)之混合溶液為移動相,起始比例為(20/80 v/v),以線性梯度方式進行分離,終比例為(90/10 v/v),使用串聯紫外線偵測器及螢光偵測器之方式偵測,紫外線偵測器之偵測波長為306 nm,螢光偵測器則以343 nm之波長激發,測其395 nm之放射波長。第二部分:為落花生癒合組織中類二苯乙烯化合物之鑑定,其結果發現落花生癒合組織中除了resveratrol之外,還鑑定出piceatannol和4-isopentenyl resveratrol兩種化合物,此外以串聯偵測法偵測落花生癒合組織甲醇萃取物,發現除了resveratrol、piceatannol和4-isopentenyl resveratrol之外,尚有許多具有UV 306 nm吸光値及excitation 343 nm /emission 395 nm螢光特性之物質,這些物質極可能是其他的類二苯乙烯化合物,因此有待進一步之探討。第三部分:為誘導落花生癒合組織產生resveratrol及其他類二苯乙烯化合物之研究,本研究最初發現組織培養所得之落花生癒合組織,甚少或甚至沒有resveratrol和類二苯乙烯化合物之存在,因此本研究利用物理方式刺激落花生癒合組織產生類二苯乙烯化合物。本研究採用三種方式誘導刺激落花生癒合組織生成resveratrol和其他類二苯乙烯化合物,包括紫外線、壓碎處理及切碎處理。而培養方式則分為靜置及振盪培養。結果發現以切碎處理靜置培養20 小時可得2100 ng/g 之resveratrol,以壓碎處理靜置培養20 小時可得2250 ng/g之piceatannol;另外將細胞以壓碎及切碎處裡後進行振盪培養,結果發現以切碎處理經振盪培養三天可得8657 ng/g之resveratrol,以切碎處理經振盪培養九天可得5500 ng/g之piceatannol。
Abstract
It is known that the seeds and roots of peanut possess substantially amount of resveratrol, a phytoalexin compound in some plants. This interests us to find wether the tissue-cultured callus of peanut also contain resveratrol and other stilbenoids. In case it contains stilbenoids, we also would like to know how to produce high stilbenoids callus, which in turn is used as a new resource for resveratrol.
Therefore, the main goal of this study is to generate stilbenoids contained peanut callus. To achieve the purpose, there are three important topics in this study must to be solved. The first is the development of an analytical method for resveratrol in peanut callus. The second is the identification of the other resveratrol-like compounds in peanut callus. And the third is developing methods to induce and scale up the production of resveratrol- like compounds.
Quite a number of chromatographic techniques including HPLC and GC have been reported to analyze resveratrol in variety of samples. However, almost all the sample preparation, separation, and detection conditions are just only feasible for some specific sample matrices. Here we developed a reversed-phase HPLC-UV-Fluorescence method for routinely analyzing resveratrol-like compounds in peanut callus. The solvent system is consisted of a 35 min gradient from 20 to 90% acetonitrile with 1% formic acid in water at a flow rate of 0.8 mL/min. The eluted species are detected sequentially at 306nm and 343nm excitation/ 395nm emission by coupled UV-fluorescence detectors.
By using electrospray ionization (ESI) ion trap mass spectrometry, we identified piceatannol and 4-isopentenyl resveratrol alone with resveratrol in the peanut callus. Also we found there are many peaks other than the three mentioned stilbenoids in the UV-fluorescence chromatograms. These signals might be the responses form those unidentified stilbenoids in peanut callus.
As a preliminary study, we did not detect resveratrol signal in intact callus samples. Horever, formation of stilbenoids in callus was induced by physical methods including UV radiation, pressing treatment, and cutting treatment. Besides, the calluses are cultured under static and suspension conduction, respectively. For 20 hrs of static culture, the highest amount of resveratrol in cutting treated callus is 2100 ng/g. And the amount of piceatannol is 2250 ng/g. Moreover, for 3 days of suspension culture, the highest amount of resveratrol in cutting treated callus reaches to 8657 ng/g. And the amount of piceatnnol in cutting treated callus also reaches to 5500 ng/g after culturing by suspension for 9 days.
目錄
頁次
表次…………………………………………………………………...VIII
圖次……………………………………………………………………..IX
前言……………………………………………………………..1
文獻整理
一、落花生之簡介………………………………………………………3
二、類二苯乙烯化合物結構特性及種類……………………………....3
三、Resveratrol之重要性及其在各種產品中之含量………………….8
四、Resveratrol生物活性……………………………………………….9
(一)抗氧化的活性…………………………………………………10
(二)抗發炎及抗血小板凝集作用…………………………………11
(三)抗癌作用………………………………………………………11
(四)調節血管舒張活性……………………………………………12
(五)具有雌性激素性………………………………………………12
五、不同誘導方式產生resveratrol之探討…………………………….12
六、Piceatannol的特性與功能…………………………………………19
材料與方法……………………………………………………21
一、癒合組織之來源……………………………………………………21
二、培養基之配製………………………………………………………21
三、癒合組織之誘導及培養……………………………………………21
四、類二苯乙烯化合物之誘導及萃取…………………………………22
五、試驗分析……………………………………………………………23
(一) 以高效能液相層析儀測定落花生癒合組織中類二苯乙烯化合物之分析方法開發……………………………………………..23
(二) 落花生癒合組織中主要類二苯乙烯化合物-resveratrol和
piceatannol 之誘導試驗………………………………………..35
結果與討論……………………………………………………36
一、癒合組織最適誘導及培養條件之探討……………………………36
二、落花生癒合組織樣品製備方法之建立……………………………38
三、落花生癒合組織萃取物指標成分標準品之標準曲線……………41
四、誘導落花生癒合組織產生resveratrol之初步探討……………….46
五、電噴灑離子化串聯質譜對落花生癒合組織萃取物之分析………49
六、含piceatannol樣品之分析條件的建立………………………......54
七、以紫外線及螢光偵測落花生癒合組織中其他類二苯乙烯化合物之偵測…………………………………………………………..........57
八、落花生癒合組織中主要類二苯乙烯化合物-resveratrol和piceatannol之誘導試驗…………………………………………...60
結論……………………………………………………………70
參考文獻………………………………………………………72
陸、參考文獻
朱德民。1995。作物學專論。台北: 九州圖書文物有限公司。pp.291。
胡澤寬、徐敏洲。2002。落花生栽培種未熟胚經器官形成再生殖株之
研究。農林學報 51(3)1-12。
胡澤寬。1997。子房柄日齡、尖端長度及培養基對栽培種花生子房柄
培養之影響。農林學報 46(3):1-12。
許坤明、葉茂生。1988。大豆品種間幼苗不同部位癒合組織之形成能力的研究。農林學報 37(1):43-54。
鄭皓鴻、葉茂生。1998。花生未熟胚培養的研究IV.未熟胚軸及子葉
不同部位培養體胚形成之探討。農林學報 47(1):91-105。
戴國興、鄭隨和。1990。栽培豆科作物之組織培養。中華農學會報 新149:42- 51。
Aaviksaar, A., M. Haga, K. Kuzina, T. Püssa, A. Raal and G. Tsoupras. 2003. Hydroxystilbenes in the roots of Rheum rhaponticum. Proc. Estonian Acad. Sci. Chem. 52(3): 99-107.
Adrian, M., P. Jeandet, R. Bessis and J. M. Joubert. 1996. Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with Aluminum Chloride (AlCl3). J. Agric. Food Chem. 44: 1979-1981.
Baderschneider, B. and P. Winterhalter. 2000. Isolation and characterization of novel stilbene derivatives from Riesling wine. J. Agric. Food Chem. 48: 2681-2686.
Bajaj, Y. P. S., Kumar, M. M. Singh and K. S. Labana. 1982. Interspecific hybridization in the genus Arachis through embryo culture. Euphytica 31: 365-370.
Belguendouz, L., L. Fermont and A. Linard. 1997. Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins. Biochem. Pharmacol. 53: 1347-1355.
Belguendouz, L., L. Fermont and M. T. Gozzelino. 1998. Interaction of trans-resveratrol with plasma lipoproteins. Biochem. Pharmacol. 55: 811-816.
Burns, J., T. Yokota, H. Ashihara, M. E. J. Lean and A. Crozier. 2002. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 50: 3337-3340.
Cantos, E., C. García-Viguera, S. de Pascual-Teresa and F. A. Tomás-Barberán. 2000. Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J. Agric Food Chem. 48: 4606-4612.
Cantos, E., J. C. Espin and F. A. Tomás-Barberán. 2001. Postharvest insuction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: a new functional fruit? J. Agric. Food Chem. 49: 5052-5058.
Cantos, E., J. C. Espín and F. A. Tomás-Barberán. 2002. Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. J. Agric. Food Chem. 50: 6322-6329.
Chen, C. K. and C. R. Pace-Asciak. 1996. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen. Pharmac. 27(2): 363-366.
Chen, Y. H., Y. L. Chung and C. H. Lin. 2002. Ultra-low temperature non-aqueous capillary electrophoretic separation-77K fluorescence spectroscopic detection for the on-line identification of photo- converted analytes of trans-resveratrol. Journal of Chromatogaphy A 943: 287-294.
Chen, R. S., P. L. Wu and Robin Y. Y. Chiou. 2001. Peanut roots as a source of resveratrol. J. Agric. Food Chem. 50: 1665-1667.
Chung, I. M., M. R. Park, J. C. Chun and S. J. Yun. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci. 164: 103-109.
Dourtoglou, V. G., D. P. Makris, F. Bois-Dounas and C. Zonas. 1999. Trans-resveratrol concentration in wines produced in Greece. J. Food Composition and Analysis 12: 227-233.
Fauconneau, B., P. Waffo-Teguo, F. Huguet, L. Barrier, A. Decendit and J. M. Merillon. 1997. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci. 61: 2103-2110.
Frankel, E. N., A. L. Waterhouse and P. L. Teissedre. 1995. Principal phenmlic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 43: 890-894.
Frémont L. 2000. Biological effects of resveratrol. Life Sci. 66(8): 663-673.
Fritzemeier, K. H. and H. Kindl. 1981. Coordinate induction by UV light of stilbene synthase, phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in leaves of Vitaceae. Planta 151: 48-52.
Fritzemeier, K. H., C. H. Rolfs, J. Pfau and H. Kindl. 1983. Action of ultraviolet-C on stilbene formation in callus of Arachis hypogaea. Planta 159: 25-29.
Gamoh, K. and K. Nakashima. 1999. Liquid chromatography/mass spectrometric determination of trans-resveratrol in wine using a tandem soild-phase extraction method. Rapid Communications in Mass Spectrometry 13: 1112-1115.
Gehm, B. D., J. M. Mcandrews, P. Y. Chien and J. L. Jameson. 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. USA 94: 14138-14143.
Goldberg, D. M., E. Ng, J. Yan, A. Karumanchiri, G. J. Soleas and E. P. Diamandis. 1995. Regional different in resveratrol isomer concentration of wines from various cultivars. J. Wine Res. 7: 13-24.
Goldberg, D. M., E. Tsang, A. Karumanchiri, E. P. Diamandis, G. Soleas and E. Ng. 1996a. Method to assay the concentration of phenolic constituents of biological interest in wines. Anal. Chem. 68: 1688-1694.
Goldberg, D. M., E. Ng, A. Karumanchiri, E. P. Diamandis and G. J. Soleas. 1996b. Resveratrol glucosides are important components of commercial wines. Am. J. Enol. Vitic. 47: 415-420.
Langcake, P. and R. J. Pryce. 1976. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological plant pathology 9: 77-86.
Langcake, P. C. A. Cornford and R. J. Pryce. 1979. Identification of pterostilbene as a phytoalexin from vitis vinifera leaves. Phytochem. 18: 1025-1027.
Liang, H., J. Zheng, D. Xiayu, B. Sheng, S. Jia, D. Wang, J. Ouyang, J. Li, L. Li, W. Z. Tian, R. Hain and J. Xu. 2000. A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method. Chinese Science Bulletin 45(7): 634-638.
Ingham, J. L. 1976. 3,5,4''-trihydroxystilbene as a phytoalexin from groundnuts (Arachis Hypogaea). Phytochem. 15: 1791-1793.
Jang, M. S., C. Lining, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H. H. S. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon and J. M. Pezzuto. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220.
Jeandet, P., R. Bessis, F. Maune and M. Sbaghi. 1993. Analysis of resveratrol in Burgundy wines. J. Wine Res. 4: 79-85.
Jeandet, P., R. Bessis, M. Sbaghi, P. Meunier and P. Trollat. 1995a. Resveratrol content of wines of different ages: Relationship with fungal disease pressure in the vineyard. Am. J. Enol. Vitic. 46: 1-4.
Jeandet, P., R. Bessis, B. Maume, P. Meunier, D. Peyron and P. Trollat. 1995b. Effect of enological practices on the resveratrol isomer content of wine. J. Agric. Food Chem. 43: 316-319.
Jeandet, P., A. C. Douillet-Breuil, R. Bessis, S. Debord, M. Sbaghi and M. Adrian. 2002. Phytoalexins from the vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50: 2731-2741.
Juan, M. E., R. M. Lamuela-Raventós, M. C. de la Torre-Boronat and J. M. Planas. 1999. Determination of trans-resveratrol in plasma by HPLC. Anal. Chem. 71: 747-750.
Kawada, N., S. Seki, M. Inoue and T. Kuroki. 1998. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and kupffer cells. Hepatol. 27: 1265-1274.
Keen N. T. and J. L. Ingham. 1976. New stilbene phytoalexins from American cultivars of Arachis Hypogaea. Phytochem. 15: 1794-1795.
Kerem Z., G. Regev-Shoshani, M. A. Flaishman and L. Sivan. 2003. Resveratrol and two monomethylated stilbenes from Israeli Rumex bucephalophorus and their antioxidant potential. J. Nat. Prod. 66: 1270-1272.
Lamuela-Raventós, R. M., A. I. Romero-Pérez, A. L. Waterhouse and M. C. de la Torre-Boronat. 1995. Direct HPLC analysis of cis- and trans-resveratrol and piceid isomers in Spanish red Vitis vinifera wines. J. Agric. Food Chem. 43: 281-283.
Landrault, N., F. Larronde, J. C. Delaunay, C. Castagnino, J. Vercauteren, J. M. Merillon, F. Gasc, G.Cros and P. L. Teissedre. 2002. Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development. J. Agric. Food Chem. 50: 2046-2052.
Langcake, P. and R. J. Pryce. 1976. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection. Physiol. Plant Pathol. 9: 77-86.
Langcake, P. and R. J. Pryce. 1977. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16: 1193-1196.
Langcake, P., C. A. Cornford and R. J. Pryce. 1979. Identification of pterostilbene as a phytoalexin from Vitis Vinifera leaves. Phytochemie. 18: 1025-1027.
Langcake, P. 1981. Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, ε-viniferin, α-viniferin and pterostilbene. Physiol. Plant Pathol. 18: 213-226.
Latruffe, N., D. Delmas, B. Jannin, M. C. Malki, P. P. Degrace and J. P. Berlot. 2002. Molecular analysis on the chemopreventive properties of resveratrol, a plant polyphenol microcomponent. International J. Mol. Med. 10: 755-760.
Liang, H., J. Zheng, X. Duan, B. Sheng, S. Jia, D. Wang, J. Ouyang, J. Li, L. Li, W. Tian, R. Hain and J. Xu. 2000. A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method. Chinese Science bulletin 45(7): 634-638.
Malovaná, S., F. J. Garć.a Montelongo, J. P. Pérez, M. A. Rodŕ.guez-Delgado. 2001. Optimisation of sample preparation for the determination of trans-resveratrol and other polyphenolic compounds in wines by high performance liquid chromatography. Analytica Chimica Acta. 428: 245-253.
McKently, A. H., G. A. Moor and F. P. Gardner. 1989. In vitro plant regeneration of peanut from seed explants. Crop Sci. 30:192-196.
McKently, A. H., G. A. Moor and F. P. Gardner. 1991. Regeneration of peanut and perennial peanut from cultured leaf tissue. Crop Sci. 31:833-837.
Melzoch, K., I. Hanzlíková, V. Filip, D. Buckiová and J. Smidrkal. 2001. Resveratrol in parts of vine and wine originating from bohemian and Moravian vineyard regions. Agriculturae Conspectus Scientificus 66 (1): 53-57.
Miura, T., S. Muraoka, N. Ikeda, M. Watanabe and Y. Fujimoto. 2000. Antioxidative and prooxidative action of stilbene derivatives. Pharmacol. & Toxicol. 86: 203-208.
Murashige, T. and F. Shoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15: 473-479.
Okuda, T. and K. Yokotsuka. 1996. Trans-resveratrol concentrations in berry skins and wines from grapes grown in Japan. Am. J. Enol. Vitic. 47: 93-99.
Pezet, R., C. Per ret, J. B. Jean-Denis, R. Tabacchi, K. Gindro and O. Viret. 2003.δ-Viniferin, a resveratrol dehydrodimer : one of the major stilbene synthesized by stressed grapevine leaves. J. Agric. Food Chem. 51: 5488-5492.
Pezet, R., V. Pont and P. Cuenat. 1994. Method to determine resveratrol and pterostilbene in grape berries and wines using high-performance liquid chromatography and highly sensitive fluorimetric detection. J. Chrom. A 663: 191-197.
Potter, G. A., L. H. Patterson, E. Wanogho, P. J. Perry, P. C. Butler, T. Ijaz, K. C. Ruparelia, J.H. Lamb, P. B. Farmer, L. A. Stanley and M. D. Burke. 2002. The cancer preventative agent resveratrol is converted to thw anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. British J. Cancer 86: 774-778.
Roggero, J. P. 2000. Study of the ultraviolet irradiation of resveratrol and wine. J. Food Composition and Analysis 13: 93-97.
Romero-Pérez, A. I., R. M. Lamuela-Raventós, A. L. Waterhouse and M. C. de la Torre-Boronat. 1996. Levels on cis- and trans-resveratrol and their glucosides in white and rosé Vitis vinifera wines from Spain. J. Agric. Food Chem. 44: 2124-2128.
Romero-Pérez, A. I., M. Ibern-Gómez, R. M. Lamuela-Raventós and M. C. de la Torre-Boronat. 1999. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 47: 1533-1536.
Sanders, T. H., R. W. McMichael, J. R. Hendrix and K. W. Hendrix. 2000. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 48: 1243-1246.
Sastri, D. C. and J. P. Moss. 1982. Effects of growth regulator on incompatible crosses in the genus Arachis L. J. Exp. Bot. 33: 1293-1301.
Sato, M., Y. Suzuki, T. Okuda and K. Yokotsuka. 1997. Content of resveratrol, piceid, and their isomers in commercially available wines made from grapes cultivated in Japan. Biosci. Biotech. Biochem. 61: 1800-1805.
Schöppner A.,and H. Kindl. 1984. Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J. Biol. Chem. 259: 6806-6811.
Schultz, T. P., T. F. Hubbard, JR,L. Jin, T. H. Fisher and D. D. Nicholas. 1990. Role of stilbenes in the natural durability of wood: fungicidal structure-activity relationships. Phytochem. 29(5): 1501-1507.
Sellars, R. M., G. H. Southward and G. C. Phillips. 1990. Adventitious somatic embryo genesis from cultured immature zygotic embryos of peanut and soybean. Crop Sci. 30: 408-414.
Seow, C. J., S. C. Chue and W. S. Fred Wong. 2002. Piceatannol, a syk-selective tyrosine kinase inhibitor, attenuated antigen challenge of guinea pig airways in vitro. European J. Pharmacol. 443: 189-196.
Sobolev, V. S. and R. J. Cole. 1999. Trans-resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem. 47: 1435-1439.
Souto, A. A., M. C. Carneiro, M. Seferin, M. J. H. Senna, A. Conz and K. Gobbi. 2001. Determination of trans-resveratrol concentration in Brazilian red wines by HPLC. J. Food Comp. Anal. 14: 441-445.
Stalker, H. T. and M. A. Eweda. 1988. Ovule and embryo culture of Arachis Hypogaea and interspecific hybrids. Peanut Sci. 15: 98-104.
Stecher, G., C. W. Huck, M. Popp and G. K. Bonn. 2001. Determination of flavonoids and stilbene in red wine and related biological products by HPLC and HPLC-ESI-MS-MS. Fresenius J. Anal. Chem. 371: 73-80.
Teguo, P. W., A. Decendit, S. Krisa, G. Deffieux, J. Vercauteren and J. M. Mérillon. 1996. The accumulation of stilbene glycosides in Vitis vinifera cell suspension cultures. J. Nat. Prod. 59: 1189-1191.
Teguo, P. W., M. E. Hawthorne, M. Cuendet, J. M. Mérillon, A. D. Kinghorn, J. M. Pezzuto and R. G. Mehta. 2001. Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nut. Cancer 40(2): 173-179.
Vastano B. C., Y. Chen, N. Zhu, C. T. Ho, Z. Zhou and R. T. Rosen. 2000. Isolation and identification of stilbene in two varieties of Polygonum cuspidatum. J. Agric. Food Chem. 48: 253-256.
Viñas P., C. López-Erroz, J. J. Marín-Hernández and M. Hernández-
Córdoba. 2000. Determination of phenols in wine by liquid chromatography with photodiode array and fluorescence detection. J. Chrom. A 871: 85-93.
Wang, Y., F. Catana, Y. Yang, R. Roderick and R. B. van Breemen. 2002. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem. 50: 431-435.
Waterhouse, A. L. and R. M. Lamuela-Raventós. 1994. The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochem. 37(2): 571-573.
Wolter F., A. Clausnitzer, B. Akoglu and J. Stein. 2002. Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J. Nut. 132(2): 298-302.
Yu, C. W., Y. G. Shin, A. Chow, Y. M. Li, J. M. Kosmeder, Y. S. Lee, W. H. Hirschelman, J. M. Pezzuto, R. G. Mehta and R. B. van Breemen.
2002. Human, rat, and mouse metabolism of resveratrol. Pharmaceutical Res. 19 (12): 1907-1914.
Zhu, Y., L. A. Coury, H. Long, C. T. Duda, B. C. Kissinger and P. T. Kissinger. 2000. Liquid chromatography with multichanel electrochemical detection for the determination of resveratrol in wine, grape juice, and grape seed capsulen with automated solid phase extraction. J. Liq. Chrom. Rel. Technol. 23 (10): 1555-1564.
Zhu, Y., H. Chiang, J. Zhou and P. T. Kissinger. 2003. In vitro metabolism study of resveratrol and identification and determination of its metabolite piceatannol by LC/EC and LC/MSMS. Current Separations 20: 93-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top