跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳政育
研究生(外文):Cheng-Yu Wu
論文名稱:以網路攝影機即時觀測之三次元量測探頭的研製
論文名稱(外文):Development of a 3D Touch Trigger Probe for Micro/Nano CMM with Real-time Observation by Network Camera
指導教授:朱志良朱志良引用關係
指導教授(外文):Chih-Liang Chu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:100
中文關鍵詞:接觸式探頭網路攝影機DVD讀取頭
外文關鍵詞:Touch Trigger ProbeNetwork CameraDVD Pick-up Head
相關次數:
  • 被引用被引用:2
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:1
本研究的主要目的是發展一低成本、高精度之具即時觀測的三次元量測探頭。本文之三次元量測探頭的研製分為四個主要部份,分別為探棒、懸吊結構、感測器與影像系統。於探棒方面,與別人合作以微放電加工機研製探棒,製作小於100μm的前端圓球,依探棒特性作為設計懸吊結構剛性的根據。而於懸吊結構上,採用微細樑設計,針對所選擇特定的接觸力來設計微細樑直徑、長度與懸吊結構的相關尺寸,並藉由解析公式的理論推導、有限元素軟體ANSYS的分析驗證與實驗測試結果,證明所完成之懸吊結構具有抑制三自由度運動的特性,且搭配所製作的探棒長度,使量測探頭具有各方向等剛性特性,減少觸發時因剛性不同所產生的預行程誤差。
感測器的研製上,採用市售DVD光碟機內的光學讀取頭改良研製而成的光學式位移感測器與角度感測器,做為三次元量測探頭的感測裝置。在探棒前端圓球小於100μm以下已經不易用肉眼辨識,需搭配一影像系統觀察探棒情況。此影像系統運用市售網路攝影機及顯微物鏡加以改良,根據幾何光學來設計所要求的景深、放大率與視野範圍,並利用光學模擬軟體ASAP分析驗證。
當三次元量測探頭的探棒前端圓球碰觸待測物表面,懸吊結構經由探棒所傳達的接觸力而變形,產生的位移量及角度偏擺量,經感測器輸出訊號達到觸發門檻即會產生一觸發訊號,以作為三軸定位平台各軸位移量之依據。同時影像系統觀察探棒前端圓球觸碰情形和探針週遭的表面輪廓情形,當碰到肉眼無法辨識之孔洞時,可以判別探棒該移動位置。
研製而成的三次元量測探頭,經實驗驗證後,具有±2.5μm×±2.5μm×3μm 的X/Y/Z軸量測範圍、不確定度為96.96nm,任意方向觸發時的作用力皆小於0.01mN。
This study develops a low-cost highly sensitive there dimensional touch trigger probe with real-time observation. The development of touch trigger probe is consisted of four parts, which are the stylus with a probe tip, suspension structure, sensors and image systems. The development of probe tip to be smaller than 100μm used Micro-EDM machine, and probe characteristics in accordance with the design of stiffness for the suspension structure. For the design of the suspension structure, this study used micro beam design, and determined the length, and diameter of the micro beam, and the dimension of the suspension structure, according to the selected contact forces. The test results were analyzed and validated with finite element software ANSYS and the theoretic deduction of analytical formula. It proved that the suspension structure has the feature of inhibiting three degree of freedom, lowering the measurement error of the sensor, improving equal stiffness of the entire touch trigger probe with the selected probe length, and reducing the pre-travel error of the touch trigger probe due to different stiffness.
The development of the sensor used optical displacement and angular sensor improved from the pick-up head inside the DVD player available on the market, and used it as the sensory device for the touch trigger probe. The ball is less than 100μm is not easy to identify with the naked eye, the need for an imaging system with a probe to observe the situation. The imaging system using the webcam and microscope, and according to the design of geometrical optics to the required depth of field, magnification and field of view, and to the use of optical simulation software ASAP.
When the probe tip touches the surface of the object to be tested, the resulting contact force would be transmitted from the probe to the suspension structure, and lead to displacement or angular deviation generated by the stiff body connected to the probe, and the sensor records the displacement or angular deviation, and generates a touch-off signal when the deviation reaches the trigger threshold. It would be used as the reference for each axial displacement of the three-axis positioning platform. At the same time, imaging system to observe the probe tip touch the object and surface profile, when it comes to the naked eye does not recognize the holes, you can determine the location of the mobile probe.
Based on the experiment, the X/Y/Z measuring range of the touch trigger probe is ±2.5μm×±2.5μm×3μm, the measuring uncertainty is 96.96nm, probing force is smaller than 0.01mN.
摘要 iv
英文摘要 v
致謝 vii
目次 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關文獻回顧 2
1.3 研究方法與論文大綱 11
第二章 結構設計與分析 12
2.1 簡介 12
2.2 完全碰撞理論 12
2.3 懸吊結構設計與分析 15
2.3.1 探棒的選用準則與製作 15
2.3.2 接觸力設計準則 18
2.3.3 剛性設計準則 20
2.3.4 自然頻率設計準則 21
2.3.5 靜態方程式 21
2.3.6 微細樑與觸發條件的選取 29
2.3.7 懸吊結構設計準則 30
2.4 有限元素分析 32
2.5 懸吊結構加工與組裝 37
第三章 光學感測器之研製 38
3.1 簡介 38
3.2 雷射聚焦探頭簡介 38
3.2.1 讀取頭關鍵元件介紹 39
3.2.2 讀取頭應用原理與光學聚焦方式探討 42
3.2.3 S曲線的量測架設 44
3.2.4 S曲線實際量測與評估 46
3.3 光學式角度感測器之研製 48
3.3.1 量測原理 49
3.3.2 四象限感測器 50
3.3.3 角度感測器量測架設與實驗結果 51
第四章 影像系統之研製 58
4.1 簡介 58
4.2 網路攝影機簡介 58
4.1.1 Webcam關鍵元件介紹 59
4.1.2 網路攝影機應用原理 61
4.3 顯微物鏡介紹與特性 62
4.4 影像系統設計原理 63
4.4.1 影像處理的基本概念 64
4.4.2 鏡頭的光學設計 65
4.4.3 光學模擬分析 73
4.4.4 影像系統製作與測試 74
4.5 三次元量測探頭之組裝 76
第五章 實驗架設與測試結果 78
5.1影像實際觀測 78
5.2 實驗架設與測試結果 79
5.1.1 單方向重複性 84
5.1.2 預行程變化量 85
5.1.3 觸發作用力 89
5.1.4 動態量測實驗 92
第六章 結論與未來展望 94
6.1 結論 94
6.2 未來展望 95
參考文獻 96
[1]H. N. Hansen, K. Carneiro, H. Haitjema and L. De Chiffre, “Dimensional micro and nano metrology,” CIRP Annals-Manufacturing Technology, Vol.55, pp. 721-743, 2006.
[2]H. Schwenke, F. Härtig, K. Wendit and F. Wäldele, “Future challenges in coordinate metrology: addressing metrological problems for very small and very large parts,” Proc. of IDW Workshop, Knoxville, pp. 2-12, May, 2001.
[3]Renishaw 網站:http://www.renishaw.com/
[4]K. Takamasu, S. Ozawa, T. Asano, A. Suzuki, “Basic concepts of nano-CMM (coordinate measuring machine with nanometer resolution) ,” The Japan - China Bilateral Symposium on Advanced Manufacturing Engineering, pp. 155-158, 1996.
[5]K. Enami, M. Hiraki, K. Takamasu, “Nano-probe using optical sensing,” IMEKO-XVI World Congress, pp.345-348, 2000.
[6]K. Enami, C. C. Kuo, T. Nogami, M. Hiraki, K. Takamasu, S. Ozono, “Development of nano-probe system using optical sensing,” IMEKO-XV World Congress, pp. 189-192, 1999.
[7]H. Naoi, M. Fujiwara, K. Takamasu, S. Ozono, “Friction drive system for nano-CMM,” Proc. Mechatronics 2000, pp.565-568 ,2000.
[8]R. Furutani, T. Takamoto, C. Y. Won, “Development of high sensitive probe using optical displacement detector,” 精密工學會誌, Vol.67, No.10, pp.1670-1674, 2001.
[9]G. N. Peggs, A. J. Lewis, S. Oldfield, “Design for a compact high-accuracy CMM,” Annals of the CIRP, Vol.48, No.1, pp.417-420, 1999.
[10]R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, A. Yacoot, “Advances in traceable nanometrology at the national physical laboratory,” Nanotechnology, Vol. 12, pp.R1-R6, 2001.
[11]A.Weckenmann, G. Peggs, J. Hoffmann, “Probing system for dimensional micro and nano metrology,” Proc. of the 7th ISMTII, Huddersfield UK, 2005.
[12]U. Brand, T. K. Besten, H. Schwenke, “Development of a special CMM for dimensional metrology on microsystem components,” Proc. of 15th Annual Meeting of the ASPE, Scottsdale, pp.361-364, Oct, 2000.
[13]H. Schwenke, F. Waldele, C. Weiskirch, H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Annals of the CIRP, Vol.50, No.1, pp.361-364, 2001.
[14]U. Brandt, T. Kleine Besten, H. Schwenke, “Development of a special CMM for dimension metrology on microsystem component, ” Proc. of the 2000 Annual Meeting of the ASPE, Scottsdale USA, pp.361-364, Oct, 2000.
[15]H. Haitjema, W. O. Pril, P. H. J. Schellekens, “Development of a silicon-based Nanoprobe System for 3-D Measurements,” Annals of the CIRP, Vol.50, No.1, pp.365-368, 2001.
[16]W. O. Pril, “Development of high precision mechanical probes for coordinate measuringmachines,” ISBN:90-386-2654-1, PhD. Thesis, TU/e sectie Precision Engineering.
[17]H. Heitjema, W. Pril, P. H. J. Schellekens, “A silicon-etched probe for 3-D coordinate measurements with an uncertainty below 0.1 μm,” IEEE Transactions on Instrumentation and Measurement, Vol.50, No.6, December, 2001.
[18]F. Meli, M. Fracheboud, S. Bottinelli, M. Bieri, R. Thalmann, J-M. Breguet, R. Clavel, “High precision, low force 3D touch probe for measurements on small objects,” euspen Int. Topical conference, Aachen, Germany, May, 2003.
[19]Y. Takaya, S. Takahashi, T. Miyoshi, K. Saito, “Development of the nano-CMM probe based on laser trapping technology,” Annals of the CIRP, Vol. 48, No. 1, pp. 421-424, 1999.
[20]Y. Takaya, H. Shimizu, S. Takahashi, T. Miyoshi, “Fundamental study on the new probe technique for the nano-CMM based on the laser trapping and Mirau interferometer,” Measurement, Vol. 25, pp. 9-18, 1999.
[21]Y. Takaya, K. Imai, T. Ha, T. Miyoshi, “Vibration probing technique for the nano-CMM based on optical radiation pressure control,” Annals of the CIRP, Vol.53, pp421-424, 2004.
[22]T. Oiwa, H. Nishitani, “Three-dimensional touch probe using three fiber optic displacement sensors,” Measurement Science and technology, Vol.15, pp. 84-90, 2004.
[23]T. Oiwa, T. Tanaka, “Miniaturized three-dimensional touch trigger probe using optical fiber bundle,” Measurement Science and technology, Vol.16, pp. 1574-1581, 2005.
[24]T. Masuzawa, Y. Hamasaki, M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” Annals of the CIRP, Vol.42, pp. 589-592, 1993.
[25]B. Kim, T. Masuzawa, T. Bourouina, “The vibroscanning method for the measurement of micro-hole profiles, ” Measurement Science and Technology, Vol. 10, No. 8, pp.697~705, 1999.
[26]T. Masuzawa, B. Kim, C. Bergaud and M. Fujino, “Twin-probe vibro-scanning method for dimensional measurement of microholes,” Annals of the CIRP, Vol. 46/1, pp.437-440, 1997.
[27]B. Muralikrishnan, J. A. Stone, J. R. Stoup, “Fiber deflection probe for small hole metrology,’’ Precision Engineering, 2005.
[28]W. Tyler Estler, S. D. Philips, B. borchardt, T. Hopp, C. Witzgall, M. Levenson, K. Eberhardt, M. McClain, Y. Shen, X. Zhang, “Error compensation for CMM touch trigger probes”, Precision Engineering, Vol.19, No.2/3, pp. 85-97, October 1996.
[29]J.R. Rene Mayer, A. Ghazzar, O. Rossy, “3D characterization, modelling and compensation of the pre-travel of a kinematic touch trigger probe”, Measurement, vol.19, No.2, pp. 83-94, 1996.
[30]R. P. Johnson, Q. Yang, C. Butler, “Dynamic error characteristics of touch trigger probes fitted to coordinate measuring Machines”, IEEE Transactions on Instrumentation and Measurement, Vol.47, No.5, Oct, 1998
[31]A. Wozniak, M. Dobosz, “Metrological feasibilities of CMM touch trigger probes. Part I: 3D theoretical model of probe pretravel”, Measurement, Vol.34, pp. 273-286, 2003.
[32]M. Dobosz, A. Wonziak, “Metrological feasibilities of CMM touch trigger probes. Part II: Experimental verification of the 3D theoretical model of probe pretravel”, Measurement, Vol.34, pp. 287-299, 2003.
[33]P. B. Dhanish, J. Mathew, “Effect of CMM point coordinate uncertainty on uncertainties in determination of circular features”, Measurement, Vol.39, pp. 522-531, 2006.
[34]K. L. Johnson, “CONTACT MECHANICS”, University of Cambridge, New York, 1985.
[35]S. P. Timenshenko, J. N. Goodier, “Theory of elasticity,”3rd ed. New York, McGraw-Hill, 1970.
[36]Masuzawa T, Fujino M and Kobayashi K, “Wire electro-discharge grinding for micro machining,” The Journal of CIRP Annals - Manufacturing Technology, Vol. 34, pp.431-434, 1985.
[37]Dong-Yea Sheu, “Micro-spherical probes machining by EDM,” The Journal of Micromechanics and Microengineering, Vol. 15, pp. 185-189, 2005.
[38]范光照, 張郭益, 精密量測, 高立圖書有限公司, 2004
[39]Sony semiconductor product list 2003, Sony Co., Photo Device KHM-310AAA 2003.
[40]張吉智, “嵌入式系統於遠端監控應用之開發研究,” 國立雲林科技大學工程研究所碩士論文, 1999
[41]楊連富, 李小珍 ,陳耀榮, “USB介面之CMOS式攝相機電路研究,”中國海是商業專科學校, 94年度改善師資案-研究計畫成果報告, 2004
[42]李孟融, “成形砂輪非接觸影像量測系統,” 國立臺灣大學機械工程研究所碩士論文,1998。
[43]徐曉珮譯, 數位影像處理, 高立圖書公司, 2005
[44]耿繼業, 何建娃, 幾何光學, 全華科技圖書公司, 2001
[45]Sushkin, Nicholas V. Depth of Field Calculation http://www.dof.pcraft.com/dof.cgi
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top