跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡澄陞
研究生(外文):Jean, Cheng-Shung
論文名稱(外文):The Calculus of Difference Forms in a Tolerance Space
指導教授:蕭欣忠蕭欣忠引用關係
學位類別:碩士
校院名稱:淡江大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:64
語文別:中文
論文頁數:10
外文關鍵詞:Tolerance SpaceFuzzy Space
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  1. Introduction
  It is well known that a general tolerance space can not admit usual algebraic structures [5]. Therefore in the study of difference geometry, the contravariant tensor bundles (for example, the tangent bundle) are lack of algebraic structures. However, we can obtain algebraic structure in the covariant bundle, that is, from the dual point of view[2].
  In §2 and §3, some results of T. Poston are reviewed. In §4, we give the definitions of tensor product, exterior product, and obtain similar results as in differential geometry. In §5, we try to define difference forms by another method. In §6, we explain why the big fuzzy condition is necessary in the study of algebraic fuzzy. These give us some insight into the theory of difference geometry. Finally some algebraic results about the fuzzy on 2^x are obtained in §7. Especially we point out the possibility to extend these results to general Boolean algebras.
  2. Basic definitions and results
  A tolerance space, or fuzzy space (X,μ) is a set X with a symmetric reflexive relation μ□X×X, called the tolerance or fuzzy on X. If (x,y) εμ, then x is withen fuzzy of y, or indistinguishable from y. The set μ(x0={y|(x,y)εμ}□X is the fuzzy neighborhood of x in X.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top