跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡維庭
研究生(外文):Wei-ting Tsai
論文名稱:以不同方法在微弧氧化鈦合金陶瓷膜表面製備氫氧基磷灰石
論文名稱(外文):Fabrication of Hydroxyapatite on the Microarc Oxidation Ceramic Coating of Titanium and its Alloy
指導教授:李九龍李九龍引用關係
指導教授(外文):Jeou-Long Lee
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:工程技術研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:97
中文關鍵詞:氫氧基磷灰石鈦合金水熱法微弧氧化射頻磁控濺鍍
外文關鍵詞:hydroxyapatitehydrothermalmicroarc oxidationtitaniumRF magnetron sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試使用不同方法在經微弧氧化處理後之鈦及鈦合金多孔二氧化鈦陶瓷膜表面製備氫氧基磷灰石。本論文分為兩部分:第一部分以自製的氫氧基磷灰石靶材,利用射頻磁控濺鍍技術將氫氧基磷灰石披覆於二氧化鈦多孔陶瓷膜表面。第二部分在微弧氧化電解液中添加Ca2+、PO43-離子,製備富含鈣、磷成份之多孔二氧化鈦陶瓷膜,再使用水熱法誘導陶瓷膜中Ca2+、PO43-離子,在表面成核,形成氫氧基磷灰石。本研究目的在能於鈦合金表面製備具耐蝕性、親水性與具生物活性的結構。所得陶瓷膜利用電化學阻抗頻譜儀(EIS)分析其耐蝕性,水滴接觸角儀分析表面親水性,並以掃描式電子顯微鏡(SEM)觀察不同方法之表面形貌、微細形狀測定儀(α-step)分析表面粗糙度及膜厚、X光繞射儀(XRD)觀察陶瓷膜的結構及相組成,最後使用MTT法檢測比較,經不同方法處理後之鈦陶瓷膜表面細胞增殖率。
第一部分研究結果顯示:射頻磁控濺鍍氫氧基磷灰石薄膜為非晶相結構,其細胞增殖能力雖次於經水熱處理之微弧氧化陶瓷膜,但仍較基材優異。第二部分研究結果顯示: 電解液中添加Ca2+、PO43-離子在定電壓400V處理下具有較高的鈣、磷含量、表面粗糙度及親水性,且經水熱法後,除可在表面形成氫氧基磷灰石結晶外,還可保留陶瓷膜原本的粗糙多孔形貌,且具有較佳的細胞增殖能力。
With different methods, this study aims to fabricate hydroxyapatite on the titanium and its alloy surface by use of microarc oxidation treatment. The paper is composed of two parts. The first part is that RF magnetron sputtering technology and self-made targets were used to produce hydroxylapatite covering the surface of titanium and its alloy. The second part is that a coating containing rich calcium and phosphorus composition was formed on the surface of titanium and its alloy by means of Ca2+, PO43-ions added in the electrolyte; and then, the surface was treated with a hydrothermal method in order to obtain rich content of hydroxylapatite.
The study also aims to prepare the titanium and its alloy with better corrosion resistance, hydrophilic property and biologically active structure. The corrosion resistance of oxide coating was analyzed by Electrochemical Impedance Spectroscopy (EIS). Hydrophilic property was investigated by water contact angle. Furthermore, the morphology, microstructure, chemical composition and phase structures of coating were studied by FSEM-EDS and XRD. Surface roughness and thickness were examined by micro-shape analyzer (α-step) analysis. In addition, the MTT assay was used to explore the cell proliferation rate.
The first part of the study shows that the surface made from the RF magnetron sputtering treatment has amorphous hydroxyapatite structure. Moreover, its cell proliferation is worse than that of the secondary part; however, it is still superior to the surface of substrate. More importantly, the surface obtained from the second part appears better hydrophilic property, richer calcium and phosphorus content, favored surface roughness and higher cell proliferation.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
1.3 研究架構 3
第二章 文獻回顧與理論 5
2.1 鈦、鈦合金及其氧化物 5
2.2 氫氧基磷灰石 9
2.3 植入金屬與骨組織 13
2.4 各種披覆氫氧基磷灰石方法 14
2.4.1 電漿噴鍍法(plasma spraying) 14
2.4.2 鹼處理法(alkali treatment) 15
2.4.3 電泳法(electrophoretic) 15
2.4.4 射頻磁控濺鍍法(RF magnetron sputtering) 16
2.4.4.1 射頻磁控濺鍍氫氧基磷灰石 16
2.4.4.2 射頻磁控濺射鍍膜原理 16
2.4.5 微弧氧化法(Microarc oxidation) 20
2.4.5.1 微弧氧化簡介 20
2.4.5.2 鈦及鈦合金微弧氧化 21
2.4.6 水熱法(Hydrothermal) 23
2.4.6.1 水熱法簡介 23
2.4.6.2 微弧氧化鈦陶瓷膜水熱處理 24
第三章 研究方法與原理 25
3.1 微弧氧化實驗步驟 25
3.1.1試片前處理 25
3.1.2 鍍液組成與電壓控制 26
3.2 水熱法實驗步驟 27
3.3 射頻磁控濺鍍氫氧基磷灰石實驗步驟 28
3.3.1 氫氧基磷灰石靶材製作步驟 28
3.3.2 濺鍍實驗步驟 29
3.3.2.1 微弧氧化試片濺鍍前處理 29
3.3.2.2濺鍍氫氧基磷灰石步驟 29
3.4體外細胞培養實驗步驟 32
3.5 鍍膜分析及量測 36
3.5.1 表面形貌分析 36
3.5.2 成分分析 37
3.5.3 鍍層晶相分析 38
3.5.4 膜層厚度量測 39
3.5.5 膜層親水性測試 40
3.5.6 膜層表面粗糙度分析 41
3.5.7 耐蝕性測試 42
3.6 細胞培養 44
3.7 實驗使用之材料及藥品 45
3.7.1 材料 45
3.7.2 藥品 45
第四章 結果與討論 47
4.1 射頻磁控濺鍍氫氧基磷灰石 47
4.1.1 氫氧基磷灰石靶材壓製 47
4.1.2 濺鍍氫氧基磷灰石 48
4.1.3 氫氧基磷灰石薄膜晶相及EDX成分分析 49
4.1.4 氫氧基磷灰石薄膜表面及橫截面分析 50
4.2 定電壓對微弧氧化膜之影響 51
4.3 純鈦及Ti-6Al-4V微弧氧化 52
4.3.1 表面及橫截面形貌分析 52
4.3.2 純鈦及Ti-6Al-4V表面粗糙度分析 56
4.3.3 純鈦及Ti-6Al-4V微弧氧化XRD分析 57
4.3.4 純鈦及Ti-6Al-4V膜層表面及橫截面EDX成分分析 59
4.3.5 純鈦及Ti-6Al-4V膜層動電位極化耐蝕性分析 63
4.4 微弧氧化膜水熱處理 69
4.4.1 水熱前後XRD分析 69
4.4.2 表面形貌分析 71
4.4.3 水熱前後EDX-Mapping分析 80
4.4.4 水滴接觸角分析 85
4.5 細胞增殖實驗分析 87
第五章 結論與未來建議 89
5.1 結論 89
5.2 未來建議 90
參考文獻 91
[1] 丁信智,“電漿噴鍍及射頻磁控濺鍍披覆氫氧基磷灰石及其複合材之製程及性質研究”,國立成功大學材料科學及工程學系博士論文(1999)。
[2] 汪建民,陶瓷技術手冊,中華民國粉末冶金協會,台北(1999)。
[3] 俞耀庭,林峰輝,白育綸,生物醫用材料,新文京開發出版,台北(2004)。
[4] 陳抗生,電磁場與電磁波,新文京開發出版,台北(2006)。
[5] 鐘時俊,Oleg Demine,翁榮洲,微電弧氧化表面處理原理與應用,材料與技術, 工業材料雜誌,第194 期,第176-179頁,(2003)。
[6] A. Lopez-Macipe, J. Homez-Morales, R. Rodriguez-Clemente, “Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solution using microwave and conventional heating,” Advancer Materials, 10, pp.49-53(1998).
[7] A. Rabenau, “The Role of Hydrothermal Synthesis in Preparative Chemistry,” Angewandte Chemie International Edition, 24,pp.1026-1040(1985).
[8] A.R. Boyd , H. Duffy, R. McCann, M.L. Cairns, B.J. Meenan,“The Influence of argon gas pressure on co-sputtered calcium phosphate thin films,” Nuclear Instruments and Methods in Physics Research B, 258, pp.421-428(2007).
[9] A.S. Dosner, A. Perloff, “Refinement of the Hydroxyapatite Structure,” Acta Cryst., 11, pp.308-309 (1958).
[10] B.Chapman, Glow Discharge processes, John Wiley & Sons, New York(1980).
[11] B.Chapman, Glow Discharge processes-Sputtering and Plasma Etching, John Wiley Sons,Canada(1980).
[12] C. S. Lin, M. T. Chen, J. H. Liu,“Structural evolution and adhesion of titanium oxide film containing phosphorus and calcium on titanium by anodic oxidation,” Journal of Biomedical Materials Research Part A, 85 ,pp.378-387(2008).
[13] C. S. McCormick, C. E. Weber, and J. R. Abelson, “An amorphous thin film transistor fabricated at 125℃ by dc reactive magnetron sputtering,” Applied Physics Letters, 70, pp.226-227(1997).
[14] D. L. Simth, Thin-film deposition princ iples and practice, The McGraw-Hill Companies lnc., pp.121-123(1999).
[15] Daqing Wei , Yu Zhou, Chunhui Yang, “Structure, cell response and biomimetic apatite induction of gradient TiO2-based/nano-scale hydrophilic amorphous titanium oxide containing Ca composite coatings before and after crystallization,” Colloids and Surfaces B: Biointerfaces, 74, pp.230-237(2009).
[16] E. W. Collings, aterials Properties Handbook: Titanium Alloy, pp. 9-10(1994).
[17] F.J. McClure, “Fluorine, Ash, Calcium, and Phosphorus in Human Teeth,” Journal of Dental Research, 29, pp.315-319(1950).
[18] Fu Liu, Fuping Wang, Tadao Shimizu, Kaoru Igarashi, Liancheng Zhao, “Formation of hydroxyapatite on Ti-6Al-4V alloy bymicroarc oxidation and hydrothermal treatment,” Surface & Coatings Technology, 199, pp.220-224(2009).
[19] G. Willmann, “Medical grade hydroxyapatite: state of the art,” British Ceramic Transactions, 9, pp.212-216 (1995).
[20] George Clayton Kennedy,“Pressure-volume-temperature relations in water at elevated temperatures and pressures,” American Journal of Science, 248, pp.540-564(1950).
[21] H. Herman, Plasma-sprayed coatings, Scientific American, pp.78-83(1998).
[22] H.W. Lehmann and R. Widmer, “Properties and Properties of Reactively Co -sputtered Transparent Conducting Films,” Thin Solid Films, 27, pp.359-368(1975).
[23] Hitoshi Ishizawa, Makoto Ogino, “Formation and characterization of anodic titanium oxide films containing Ca and P,” Journal of Biomedical Materials Research, 29, pp.65-72(1995).
[24] Ho-Jun Songa, Ji-Woo Kima, Min-Suk Kookb, Won-Jin Moonc, Yeong-Joon, “Parka Fabrication of hydroxyapatite and TiO2 nanorods on microarc-oxidized titanium surface using hydrothermal treatment,” Applied Surface Science, 256,pp.7056-7061(2010).
[25] I. Abrahamsson, N.U. Zitzmann, T. Berglundh, A. Wennerberg and J. Lindhe“Bone and soft tissue integration to titanium implants with different surface topography: an experimental study in the dog,” International Journal of Oral & Maxillofacial Implants, 16,pp.323-332(2001).
[26] Ida K. ,Togaya T., Suzuki S., “Mechanical characterics of pure titanium and titanium alloys,” Jpn J Dent Mater, 2, pp.765-771(1983).
[27] J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, Z. Schwartz, “Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition,” Biomaterials, 19, pp.2219-2232(1998).
[28] J. M. Choi, Y.M. Kong, S. Kim, and C. S. Hwang, “Formation and characterization of hydroxyapatite coating layer on Ti-base metal implant by electro-beam deposition,” J. Mater. Res., 14, 2980-2985(1999).
[29] J.D. Bronzino, The Biomedical Engineering Handbook, 3rd, CRC Press, Florida, 562-568(1995).
[30] J.G.C. Wolke, K. van Dijk, H.G. Schaeken, K de Groot, and J.A. Jansen, “Study of the surface characteristics of magnetron-sputter calcium phosphate coatings,” Journal of Biomedical Materials Research, 28, pp.1477-1484(1994).
[31] Jifeng Sun, Yong Han, Xin Huang, “Hydroxyapatite coatings prepared by micro-arc oxidation in Ca- and P-containing electrolyte,” Surface and Coatings Technology, 201, pp. 5655-5658(2007).
[32] Jong-Ho Lee, Seung-Eon Kim, Young-Jig Kim, Choong-Soo Chi , Han-Jun Oh, “Effects of microstructure of anodic titania on the formation of bioactive compounds,” Materials Chemistry and Physics, 98, pp.39-43(2006).
[33] K. de Groot, R.G.J. Geesink, C.P.A.T. Klein and P. Serkian,, “Plasma sprayed coating of hydroxyapatite,” J. Biomed. Mater. Res., 21, pp.1375-1381(1987).
[34] K. de Groot, Bioceramics of calcium phosphate, CRC Press. Inc., Boca Raton, Florida, pp.1-97(1883).
[35] K. de Groot, “Medical applications of calcium phosphate bioceramics,” The Centennial Memorial Issue of The Ceramic Society of Japan, 99, 943-953(1991).
[36] K. Ozeki , T. Yuhta , Y. Fukui , H. Aoki,“Phase composition of sputtered films from a hydroxyapatite target,” Surface and Coatings Technology, 160, pp.54-61(2002).
[37] L. Jonášová, F.A. Müller, A. Helebrant, J. Strnad, P. Greil, “Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer,” Biomaterials, 23, pp.3095-3101(2002).
[38] L. Montanaro, C.R. Arciola, D. Campoccia, M. Cervellati, “In vitro effects on MG63 osteoblast-like cells followingcontact with two roughness-differing fluorohydroxyapatite-coated titanium alloys,” Biomaterials, 23, pp.3651-3659(2002).
[39] Larry L. Hench, and June Wilson, An Introduction to Bioceramics, World Scientific Publishing Co. Pte. Ltd, Singapore, pp.224-228 (1993).
[40] Lawrence, Jonathan and Hao, Liang and Chew, Hong R. “On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy,” Surface & Coatings Technology, 200, pp.18-19(2006).
[41] Liu F., Wang, F., Shimizuc, T., Igarashic, K. and L. Zhaoa ,“Formation of hydroxyapatite on Ti–6Al–4V alloy by microarc oxidation and hydrothermal treatment,” Surface and Coatings Technology, 199, pp.220-224(2005).
[42] Long-Hao Li, Young-Min Kong, Hae-Won Kim, Young-Woon Kim, Hyoun-Ee Kim “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, 25, pp.2867-2875(2004).
[43] M. Chiapasco and C. Gatti“Implant-retained mandibular overdentures with immediate loading: a 3- to 8-year prospective study on 328 implants,” Clinical Implant Dentistry and Related Research, 5, pp.29-38(2003).
[44] M. Long, H. J. Rack, “Titanium alloys in total joint replacement-a materials science perspective,” Biomaterials, 19, pp. 1621-1639(1998).
[45] M. Mattioli Belmonte, A. de Benedittis, R. A. A. Muzzarelli, M.G. Gandolfi, C. Zucchini, A. Krajewski, A. Ravaglioli, E. Roncari, M. Fini, R. Giardino, “Bioactivity modulation of bioactive materials in view of their application in 85 osteoporotic patients,” Journal of Materials Science: Materials in Medicine, 9, 485-492(1998).
[46] Myung-Joo Kim, Myung-Un Choi, Chang-Whe Kim, “Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell,” Biomaterials, 27, pp.5502-5511(2006).
[47] Paul Ducheyne, W. Van Raemdonck, J.C. Heughebaert and M. Heughebaert“Structural analysis of hydroxyapatite coatings on titanium,” Biomaterials, 7, pp.97-103(1986).
[48] Richard I. Walton ,“Subcritical Solvothermal Synthesis of Condensed Inorganic materials,”Chemical Society Reviews, 31, pp.230-238(2002).
[49] S. R. Radin, and P. Ducheyne. “Effect of calcium phosphate ceramic composition and structure on in vitro behavior.Precioitation,” J. Biomed. Mater. Res., 27, pp.35-45(1993).
[50] S. Swann, “Magnetron sputtering”, Physics and Technology, 19, pp.67-75(1988).
[51] Saiz E., Goldman, M., Gomez, V. J. M., Tomsia, A. P., Marshal, G. W. l and S. J. Marshall, “In vitro behavior of silicate glass coatings on Ti6Al4V,” Biomaterials, 23, pp.3749- 3756(2002).
[52] Shi Xing-ling, Wang Qing-liang, Wang Fu-shun, Ge Shi-rong, “Effects of electrolytic concentration on properties of micro-arc film on Ti6Al4V alloy,” Mining Science and Technology, 19, pp.0220-0224(2009).
[53] Smith, C. J. E., Hughes, A. N., “The corrosion fatigue behavior of a titanium-6 aluminum-4 vanadium alloy,” Eng. Med., 7, pp.158-171(1966).
[54] Sul Y.T.“The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant,” Biomaterials, 24, pp.3893-3907(2003).
[55] W.R. Walsh, D.L. Christiansen, “Demineralized bone matrix as a template for mineral-organic composites,” Biomaterials, 16, pp.1363-1371(1995).
[56] Won-Hoon Song, Youn-Ki Jun, Yong Han, Seong-Hyeon Hong, “Biomimetic apatite coatings on micro-arc oxidized titania,” Biomaterials , 25, pp.3341–3349(2004.)
[57] Y.C. Tsui, C. Doyle, T.W. Clyne, “Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels,” Biomaterials ,19 , pp.2015-2029(1998).
[58] Y.C. Tsui, C. Doyle, T.W. Clyne, “Plasma sprayed hydroxyapatite coatings on titanium substratesPart 2: optimisation of coating properties,” Biomaterials, 19 , pp.2031-2043(1998).
[59] Yakovlev, V. V., Scarel, G.,Aita, C. R., and Mochizuki S. , “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Applied Physics Letters , 76, pp.1107-1109(2000).
[60] Yerokhin A.L., Nie X, Leyland A, Matthews A, Dowey S.J.“Plasma electrolysis for surface engineering,” Surface and Coatings Technology, 122, pp.73-93(1999).
[61] Young Wook Lim , Soon Yong Kwon , Doo Hoon Sun , Hyoun Ee Kim , Yong Sik Kim, “Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation,” Clin Orthop Relat Res, 467,pp.2251-2258(2009).
[62] Yunzhi Yang, Jiemo Tian, Li Deng, Joo L. Ong “Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro,” Biomaterials, 23, pp.1383-1389(2002).
[63] Z. Schwartz, C.H. Lohmann, M. Sisk, D.L. Cochran, V.L. Sylvia,J. Simpson, D.D. Dean, B.D. Boyan, “Local factor production by MG63 osteoblast-like cellsin response to surface roughness and 1,25-(OH)2D3is mediated via protein kinase C- and protein kinase A-dependent pathway,” Biomaterials, 22, pp.731-741(2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊