跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊帆
研究生(外文):Jiun-Fan Chen
論文名稱:應用於感測環境參數之超高頻被動式射頻辨識標籤電路
論文名稱(外文):A UHF Passive RFID Transponder for Sensing Environmental Parameters
指導教授:吳紹懋
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:射頻辨識系統標籤電路被動式超高頻
外文關鍵詞:Radio Frequency IdentificationTransponderPassiveUHF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文實現超高頻被動式無線射頻辨識系統前端電路之RF-DC整流器和穩壓器,將天線所接受到的功率轉換成直流電壓供給電路使用。本研究詳細地分析整流電路,針對寄生電容、電阻造成的損耗,輸入電壓與整流電路級數的關係以及級數對輸出電壓的影響做進一步的論述,並作模擬驗證。最後採用TSMC 0.35um CMOS 2P4M的標準製程實現,並量測IC晶片各個子電路功能,整體晶片的面積大小為0.576 x 0.47 mm2,能量損耗為805uW。其中穩壓器耗去了大部分的能量,而若提高負回授電阻將可降低穩壓器之功耗,提升整體晶片性能。
In this thesis, we implement a front-end circuit of Ultra High Frequency (UHF) passive Radio-Frequency Identification (RFID) tag, including RF-DC converter and regulator. Thorough analysis of the RF to DC circuit are presented analytically, focusing on the loss of the parasitic capacitor and resistance, the relationship between the input voltage and the n-th stage of the rectifier circuit and the number of stages versus the output voltage. The chip is fabricated in standard TSMC 0.35um CMOS 2P4M process and the function of each block in the chip is measured respectively. The chip area is 0.576 x 0.47 mm2, and the total power consumption is 805uW. The LDO regulator circuit consumes most of the power.
授權書 i
摘 要 ii
Abstract iii
Acknowledgements iv
List of Contents v
List of Tables vii
List of Figures viii

Chapter 1 1
Introduction 1
1.1 Research and Background 1
1.2 Motivation and Method 4
1.3 Structure of Thesis 7

Chapter 2 11
The Architecture and Operating Principles 11
2.1 Structure 11
2.2 RF to DC Circuit 13
2.2.1 Function of Rectifier Circuit 14
2.2.2 Function of Ring Oscillator Circuit 24
2.2.3 Function of Charge Pump Circuit 27

Chapter 3 31
The Building Blocks Operation Principles and Simulations 31
3.1 Stable Voltage Circuit 31
3.1.1 Function of Bandgap Reference Circuit 32
3.1.2 Function of Low Drop Output (LDO) Circuit 35
3.2 Power on Reset (POR) Circuit 39
3.3 Test Considering 41
3.4 Summary 42



Chapter 4 43
Testing and Measurement Result 43
4.1 Test Bench Setup 43
4.2 Rectifier Circuit 47
4.3 Ring Oscillator 51
4.4 Power on Reset 56
4.5 Bandgap Circuit 58
4.6 Low Drop Output 61
4.7 Measurement Summary 62

Chapter 5 64
Conclusion and Future Work 64
5.1 Conclusion 64
5.2 Future Work 65

Bibliography 67














List of Tables
Table 1- 1 The operation frequency and applications 5
Table 1- 2 Comparison of Active tag, Semi-passive tag and Passive tag 6
Table 1- 3 Various countries draw to the rule of the ultra high frequency range 8
Table 1- 4 Specification of the RFID tag 10

Table 2- 1 Requirements of the RFID 13
Table 2- 2 Requirements of the Rectifier Circuit 14
Table 2- 3 Stable stage with different input voltage. (8 stage) 21
Table 2- 4 Sensitivity of the rectifier circuit. 21
Table 2- 5 Requirements of the Ring Oscillator Circuit 24
Table 2- 6 Different input voltage with frequency values. 26
Table 2- 7 Requirements of the Charge Pump Circuit 27

Table 3- 1 Requirements of the Band-gap Reference Circuit 32
Table 3- 2 Requirements of the Low Drop Output Circuit 35
Table 3- 3 Requirements of the POR. 39
Table 3- 4 Power consumption for each block 41

Table 4- 1 The testing results of the different input power. 50
Table 4- 2 Measurement result of IC chip. 51
Table 4- 3 Measurement result of IC chip. 52
Table 4- 4 Measurement result of IC chip. 55
Table 4- 5 Measurement result of power on reset IC chip. 56
Table 4- 6 The test equipments of Lab view. 58
Table 4- 7 Measurement result of IC chip. 58
Table 4- 8 The measurement result of summary 63

Table 5- 1 Comparison with the other RFID system. 65





List of Figures
Fig. 1- 1 Development of RFID in recent years. 2
Fig. 1- 2 Applications of RFID system in industry. 3
Fig. 1- 3 Operating principle of a backscatter transponder. [20] 4
Fig. 1- 4 Block diagram of RFID system and dashed block enclose the work in thesis. 9

Fig. 2- 1 Block diagram of RFID system and dashed block enclose the work in thesis. 12
Fig. 2- 2 RF to DC Circuit. 14
Fig. 2- 3 Structure of Rectifier circuit [18]. 15
Fig. 2- 4 Operating principle of rectifier circuit. 16
Fig. 2- 5 Take parasitic effect into considering. 17
Fig. 2- 6 Output voltage VS number of stages by MS Excel. 19
Fig. 2- 7 The relationship between Vin and N to achieve proposed Vout. 20
Fig. 2- 8 Transient response of the 8 staged rectifier circuit different level. 20
Fig. 2- 9 Input voltage with n stage. (Simulation by H-spice) 22
Fig. 2- 10 Compare with results of HSPICE and MODEL. 22
Fig. 2- 11 Structure of Ring Oscillator Circuit. 24
Fig. 2- 12 Simulation results from different VDD with changing frequency. 26
Fig. 2- 13 The improved circuit of Dickson charge pump. [3] 28
Fig. 2- 14 Cross-connected NMOS cell. 28
Fig. 2- 15 Different input frequency for charge pump circuit. 29
Fig. 2- 16 Simulation result of ring oscillator connect to charge pump. 30

Fig. 3- 1 Stable Voltage Circuit. 32
Fig. 3- 2 Schematic of Bandgap Reference Circuit. 33
Fig. 3- 3 The working principle of a Bandgap Reference voltage. 33
Fig. 3- 4 Simulation results of Bandgap Reference Circuit. 34
Fig. 3- 5 Line regulation of Bandgap Reference Circuit. 34
Fig. 3- 6 Operational rules of LDO. 35
Fig. 3- 7 Structure of LDO circuit. 36
Fig. 3- 8 Line regulation of LDO (0V~5V) 38
Fig. 3- 9 Load regulation of LDO (10uA~20mA) 38
Fig. 3- 10 Structure of POR circuit. 40
Fig. 3- 11 Pulse signal is generated by POR circuit. 40
Fig. 3- 12 Complete layout of tag system circuit. 42

Fig. 4- 1 The photo of testing environment. 44
Fig. 4- 2 I.C photo is viewed by electronic scope. 44
Fig. 4- 3 The test bench of the RFID system circuit. 45
Fig. 4- 4 PCB board for measurement. 46
Fig. 4- 5 Measurement results of the rectifier circuit. 47
Fig. 4- 6 Vector signal generator. 47
Fig. 4- 7 Testing results of different IC chip in amplitude input signal. 48
Fig. 4- 8 Testing results of different IC chip in dBm input signal. 49
Fig. 4- 9 Measurement results of the ring oscillator circuit. 51
Fig. 4- 10 Output waveform of Ring oscillator circuit. 52
Fig. 4- 11 Measurement result for increasing input voltage 54
Fig. 4- 12 Measurement results of the power on reset circuit. 56
Fig. 4- 13 Output waveform of the power on reset circuit. 57
Fig. 4- 14 Measurement results of the ring oscillator circuit. 58
Fig. 4- 15 Measurement result of output voltage 59
Fig. 4- 16 Measurement result of chip in Lab View. 59
Fig. 4- 17 Data information of Lab view. 60
Fig. 4- 18 Measurement results of the low drop output circuit. 61
Fig. 4- 19 Measurement result of chip in Lab View. 62
[1]J. Doyle, Young-Jun Lee, Yong-Bin Kim, H. Wilsch, and F. Lombardi, “A CMOS Subbandgap Reference Circuit With 1-V Power Supply Voltage,” Solid-State Circuits, IEEE Journal of , vol. 39, no.1, pp. 252-255, Jan. 2004.
[2]Hongwei Shen, Lilan Li, and Yumei Zhou, “Fully Integrated Passive UHF RFID Tag with Temperature Sensor for Environment Monitoring,” ASIC, 2007. ASICON ''07. 7th International Conference on, vol., no., pp. 360-363, 22-25 Oct. 2007.
[3]Shantanu A. Bhalero, Abhishek V. Chaudhary, and Rajendra M. Patrikar, “A CMOS Low Voltage Charge Pump,” VLSI Design, 2007. Held jointly with 6th International Conference on Embedded Systems., 20th International Conference on, Vol., Jan. 2007 pp. 941-946.
[4]Yuan Yao, Yin Shi, and Foster. F. Dai, “A novel Low-Power Input-Independent MOS AC/DC Charge Pump,” Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, Vol., 23-26 May 2005 pp. 380- 383 Vol. 1.
[5]T. Tanzawa, T. Tanaka, ”Dynamic analysis of Dickson charge pump circuit,” Solid-State Circuits, IEEE Journal of, Vol. 32, Iss.8, Aug 1997, pp. 1231-1240.
[6]A. Cabrini, L. Gobbi, and G. Torelli, “Theoretical and experimental analysis of Dickson charge pump output resistance,” Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, vol., no., pp. 4 pp.-, 21-24 May 2006.
[7]Umeda, T.; Yoshida, H.; Sekine, S.; Fujita, Y.; Suzuki, T.; Otaka, S., "A 950-MHz rectifier circuit for sensor network tags with 10-m distance," Solid-State Circuits, IEEE Journal of , vol.41, no.1, pp. 35-41, Jan. 2006.
[8]Kae Wong, D. Evans, “A 150mA Low Noise, High PSRR Low-Dropout Linear Regulator in 0.13 μm Technology for RF SoC Applications,” Solid-State Circuits Conference, 2006. ESSCIRC 2006. Proceedings of the 32nd European, vol., no., pp.532-535, Sept. 2006.
[9]Xuejin Wang, B. Bakkaloglu, “A 2.4-GHz LC-Tank VCO with Minimum Supply Pushing Regulation Technique,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2007 IEEE, vol., no., pp.127-130, 3-5 June 20073.
[10]Jari-Pascal Curty, Nobert Joehl, Francois Krummenacher, Catherine Dehollain, Member, ”A model for µ-power rectifier and analysis and design,” VLSI Design, 2007. Held jointly with 6th International Conference on Embedded Systems, 20th International Conference on, Vol., Jan. 2007 pp.941-9463.
[11]Balachandran, G.K.; Barnett, R.E., "A 110 nA Voltage Regulator System With Dynamic Bandwidth Boosting for RFID Systems," Solid-State Circuits, IEEE Journal of , vol.41, no.9, pp.2019-2028, Sept. 2006.
[12]Shameli, A.; Safarian, A.; Rofougaran, A.; Rofougaran, M.; De Flaviis, F., "Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique," Microwave Theory and Techniques, IEEE Transactions on , vol.55, no.6, pp.1089-1097, June 2007.
[13]Amin Shameli, Aminghasem Safarian, Ahmadreza Rofougaran, Maryam Rofougaran, and Franco De Flaviis, “Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique,” Microwave Theory and Techniques, IEEE Transactions on , vol.55, no.6, pp.1089-1097, June 2007.
[14]Kae Wong; Evans, D., "A 150mA Low Noise, High PSRR Low-Dropout Linear Regulator in 0.13um Technology for RF SoC Applications," Solid-State Circuits Conference, 2006. ESSCIRC 2006. Proceedings of the 32nd European , vol., no., pp.532-535, Sept. 2006.
[15]Kocer, F.; Walsh, P.M.; Flynn, M.P., "Wireless, remotely powered telemetry in 0.25 μm CMOS," Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE , vol., no., pp. 339-342, 6-8 June 2004.
[16]Ma Changming, Chun Zhang, Zhihua Wang, “A Low-Power AC/DC Rectifier for Passive UHF RFID Transponders,” Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2007 International Symposium on , vol., no., pp.309-314, 16-17 Aug. 2007.
[17]Klaus Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identifications, 2nd ed. New York:Wiley, 2003, pp.85~96, 70~80, 55~63.
[18]Changming Ma; Chun Zhang; Zhihua Wang, "A Low-Power AC/DC Rectifier for Passive UHF RFID Transponders," Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2007 International Symposium on , vol., no., pp.309-314, 16-17 Aug. 2007.
[19]Meng-Lin Hsia, Yu-Sheng Tsai, Oscal T-C. Chen, “An UHF Passive RFID Transponder Using A Low-Power Clock Generator without Passive Components,” Circuits and Systems, 2006. MWSCAS ''06. 49th IEEE International Midwest Symposium on , vol.2, no., pp.11-15, 6-9 Aug. 2006.
[20]Hongwei Shen, Lilan Li, Yumei Zhou, "Fully integrated passive UHF RFID tag with temperature sensor for environment monitoring," ASIC, 2007. ASICON ''07. 7th International Conference on , vol., no., pp.360-363, 22-25 Oct. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top