跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林琬亭
研究生(外文):Wan-Ting Lin
論文名稱:術前局部麻醉劑處理對溶血磷脂鹼所引發之損傷下甘丙胺受器及其相關生化因子的影響
論文名稱(外文):Pre-emptive analgesia reduced GalR2 and pain-related proteins expression on LPC induced animal neuropathic pain model
指導教授:呂俊宏呂俊宏引用關係
指導教授(外文):June-Horng Lue
口試委員:陳淑華蔡怡汝
口試委員(外文):Seu-Hwa ChenYi-Ju Tsai
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:解剖學暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:62
中文關鍵詞:甘丙胺&;#32957;甘丙胺&;#32957;受器神經損傷利多卡因溶血磷脂醯膽鹼神經病變疼痛
外文關鍵詞:GalR2lidocaineLPCneuropathic painallodyniahyperalgesia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
先前的研究指出神經傳遞物之一的甘丙胺&;#32957; (Galanin)可利用專一性甘丙胺&;#32957;類型二受器 (Galanin receptor 2, GalR2)調控周邊神經系統的痛覺傳遞;當神經損傷時,受損神經元會藉由神經發炎、神經自發性放電及痛覺相關因子釋放的方式,引起神經病變疼痛 (neuropathic pain)。但是有關正中神經髓鞘退化剝離後GalR2及其受質數量上的變化仍欠缺直接證據,更遑論它對正中神經損傷後續誘發行為、發炎的影響。因此,本實驗利用溶血磷脂醯膽鹼(lysophosphatidylcholine,LPC)引發神經髓鞘剝離損傷脫落,作為探討神經損探討正中神經以LPC處理後,GalR2與神經病變疼痛的關係。
LPC處理後,實驗動物手術側產生神經病變疼痛的行為反應。以細胞免疫化學法標誌後,發現在正常大白鼠的背根神經節中,GalR2免疫反應神經元的數量相當少,且主要為小型神經元;在LPC處理一週後,GalR2免疫反應神經元佔背根神經節的的百分比明顯上升,而且在體型的分布有擴展至中型神經元,且相較於小型神經元在數量上有明顯較多的現象。配合雙重免疫螢光標誌法染色時,發現神經損傷後一週GalR2與辣椒素受器 (VR1)、P2X3、peripherin、NF200、NPY及MMP9等的雙重標誌神經元數目及占背根神經節中的比例都有顯著上升。
鑑於神經病變疼痛成因之一有可能來自於神經末端自發性放電 (sponteous discharge),本實驗又利用抑制鈉離子通道之局部麻醉劑-利多卡因 (lidocaine)術前處理;結果發現lidocaine術前處理可減緩LPC誘發實驗動物神經病變疼痛程度,並降低神經損傷之背根神經節中GalR2免疫反應神經元數量及百分比上升幅度。配合雙重免疫標誌染色,同時也發現神經損傷後一週GalR2與辣椒素受器 (VR1)、P2X3、peripherin、NF200、NPY及MMP9等的雙重標誌神經元數目及占背根神經節中的百分比也有緩和其上升的幅度。
除此之外,LPC處理一週後楔狀神經節內GalR2免疫反應神經元的數量也會高於正常組別,並因為lidocaine處理而有下降的現象。由結果顯示lidocaine的處理可造成神經過敏痛及痛覺相關化學因子的改變,進一步引發抑制痛覺表現的結果。


Previous studies have shown that Galanin modulated peripheral pain sensation via galanin receptor type 2 (GalR2). Following nerve injury, inflammation, spontaneous discharge and upregulation of pain related factors would involve in neuropathic pain development. To our knowledge, the correlation between median nerve demyelination and GalR2 and its substrate expression levels has not been documented; and yet the effect of GalR2 on medain neuropathic pain is not valid. Thus, using LPC treated median nerve injury model, we investigate the role of GalR2 and its pain corelated factors in the upper limb neuropathic pain.
One week after LPC treatment of median nerve induced mechnical allodynia and thermal hyperalgesia. Immunohistochemistry analysis showed that GalR2-like immunoreactive (-LI) neurons were predominately in small-size DRG neurons of normal rats. However, one week after LPC treatment, GalR2-LI neurons not only increased in its percentage but also distributed in medium- and large-sized neurons. Moreover, to characterize GalR2-LI neurons in the DRG was using immunofluorescence double labeling for NF200, peripherin, pain-related factors including vanilloid receptor subtype 1 (VR1), P2X3, NPY, nNOS, Galanin, or MMP9. We found that the number and percentage of GalR2-LI neurons colocalized with NF200, P2X3, NPY, nNOS, Galanin and MMP9 were increased in the LPC-treated DRG. Furthermore, lidocaine pretreatment attenuated the number of upregulated GalR2-LI neurons in the LPC-treated DRG. Our study also found that one week afterLPC treatment, the number of GalR2-LI neurons in the cuneate nucleus of LPC treated rats was higer than that in the control group. The present results suggest that lidocaine pretreatment relieved the development of neuropathic pain partially pass through reducing GalR2 expression.


中文摘要…………………………………....…………………...................…....i
英文摘要…………………………………....…………………….......................iii
壹、前言…...........……………………………………....................…...….….....1
一、 周邊神經損傷 (peripherinal nerve injury)…..………............……….1
二、 Galanin Receptor 2表現對神經損傷的影響…………............……….3
三、 手術傷害前麻醉 (pre-emptive analgesia)於周邊神經之作用…….….4
四、 背側─內側蹄系路徑與神經病變疼痛之關聯…….…........................4
五、 痛覺相關因子在神經損傷下的表現…….…........................……........5
六、 發炎因子在神經損傷下之表現….........................................……........8
七、 實驗目的…..........................................................................…...............8
貳、實驗材料與方法…................……………………………………….…..9
一、 實驗動物…………………………………………...………................9
二、 正中神經去髓鞘的實驗動物模式……………………………….......9
三、 術前局部麻醉處理…………………........………………….…..........9
四、 動物行為測試………................................……………………….......10
五、 動物犧牲……................................……………………….…..............11
六、 背根神經節抗GalR2免疫組織化學反應...........................................11
七、 背根神經節抗GalR2及痛覺相關蛋白雙重免疫螢光染色...............12
八、 楔狀神經核抗GalR2免疫組織化學反應...........................................14
九、 影像分析……................................……………………...……............15
&;#21442;、結果………………………………………….....................………...….......16
一、 局部麻醉劑術前處理對LPC正中神經損傷的神經病變性疼痛行為的影響...................................................................................................16
二、 局部麻醉劑術前處理對LPC正中神經損傷第六頸髓段背根神經節中Galanin Receptor 2神經元的分布與數量變化的影響..................17
三、 局部麻醉劑術前處理對LPC正中神經損傷第六頸髓段背根神經節中Galanin Receptor 2神經元與peripherin或NF200雙重免疫螢光標記的變化..............................................................................................18
1. NF200神經元於第六頸髓背根神經節中的數量變化.................18
2. GalR2與NF200於第六頸髓背根神經節中雙重免疫螢光標記數量變化...........................................................................................18
3. peripherin於第六頸髓背根神經節中的數量變化........................18
4. GalR2與peripherin於第六頸髓背根神經節中共同表現數量變化...................................................................................................19
四、 局部麻醉劑術前處理對LPC正中神經損傷第六頸髓段背根神經節中Galanin Receptor 2與痛覺相關因子雙重標誌變化......................19
1. GalR2與疼痛相關因子於第六頸髓背根神經節中表現量變化...19
2. GalR2與NPY於第六頸髓背根神經節中表現量.........................20
3. GalR2與nNOS於第六頸髓背根神經節中表現量.......................20
4. GalR2與P2X3於第六頸髓背根神經節中表現量........................21
5. GalR2與VR1於第六頸髓背根神經節中表現量..........................21
6. GalR2與Nav1.3於第六頸髓背根神經節中表現量.....................22
五、 局部麻醉劑術前處理對LPC正中神經損傷第六頸髓段背根神經節中Galanin Receptor 2神經元與MMP9在雙重免疫螢光標記變化...22
1. MMP9神經元於第六頸髓背根神經節中的數量變化..................22
2. GalR2與MMP9於第六頸髓背根神經節中雙重免疫螢光標記數量變化...........................................................................................23
六、 正中神經以不同手術處理後Galanin Receptor 2免疫反應神經元在楔狀神經核中段區域的分佈情形.......................................................23
肆、討論………………………………………………..………........................24
一、 術前給予2%lidocaine對神經病變疼痛行為影響.............................24
二、 神經損傷後GalR2於背根神經節中表現量增加...............................24
三、 術前給予2%lidocaine對GalR2與疼痛相關因子表現量影響.........26
四、 術前給予2%lidocaine對發炎相關因子表現量影響..........................30
伍、參考文獻………………………………………….....…………................32
陸、圖與圖說………………………………….....…………...............………...40


1.Adams CW, Csejtey J, Hallpike JF, &; Bayliss OB (1972) Histochemistry of myelin. XV. Changes in the myelin proteins of the peripheral nerve undergoing Wallerian degeneration--electrophoretic and microdensitometric observations. Journal of neurochemistry 19(9):2043-2048.
2.Akopian AN, et al. (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature neuroscience 2(6):541-548.
3.Bedecs K, Berthold M, &; Bartfai T (1995) Galanin--10 years with a neuroendocrine peptide. The international journal of biochemistry &; cell biology 27(4):337-349.
4.Bennett JA, Goodchild CS, Kidd C, &; McWilliam PN (1988) Inhibition of brain stem neuronal activity by cardiac and pulmonary vagal afferent fibres in the cat. Quarterly journal of experimental physiology (Cambridge, England) 73(6):959-972.
5.Berry JF, Cevallos WH, &; Wade RR, Jr. (1965) LIPID CLASS AND FATTY ACID COMPOSITION OF INTACT PERIPHERAL NERVE AND DURING WALLERIAN DEGENERATION. Journal of the American Oil Chemists'' Society 42:492-500.
6.Black JA, Langworthy K, Hinson AW, Dib-Hajj SD, &; Waxman SG (1997) NGF has opposing effects on Na+ channel III and SNS gene expression in spinal sensory neurons. Neuroreport 8(9-10):2331-2335.
7.Bloomquist BT, et al. (1998) Cloning and expression of the human galanin receptor GalR2. Biochemical and biophysical research communications 243(2):474-479.
8.Bradbury EJ, Burnstock G, &; McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Molecular and cellular neurosciences 12(4-5):256-268.
9.Burazin TC &; Gundlach AL (1998) Inducible galanin and GalR2 receptor system in motor neuron injury and regeneration. Journal of neurochemistry 71(2):879-882.
10.Burnstock G &; Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Current opinion in neurobiology 6(4):526-532.
11.Caterina MJ, et al. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816-824.
12.Chattopadhyay S, Myers RR, Janes J, &; Shubayev V (2007) Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain, behavior, and immunity 21(5):561-568.
13.Chen CC, et al. (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377(6548):428-431.
14.Ch''ng JL, et al. (1985) Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 16(2):343-354.
15.Chung K, Langford LA, &; Coggeshall RE (1987) Primary afferent and propriospinal fibers in the rat dorsal and dorsolateral funiculi. The Journal of comparative neurology 263(1):68-75.
16.Cizkova D, et al. (2002) Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury. Experimental brain research 147(4):456-463.
17.Cockayne DA, et al. (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407(6807):1011-1015.
18.Coleman MP &; Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annual review of neuroscience 33:245-267.
19.Cook SP &; McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95(1-2):41-47.
20.Dallos A, et al. (2006) Galanin receptor expression in cultured human keratinocytes and in normal human skin. Journal of the peripheral nervous system : JPNS 11(2):156-164.
21.Day AS, Lue JH, Sun WZ, Shieh JY, &; Wen CY (2001) A beta-fiber intensity stimulation of chronically constricted median nerve induces c-fos expression in thalamic projection neurons of the cuneate nucleus in rats with behavioral signs of neuropathic pain. Brain research 895(1-2):194-203.
22.Friebe A &; Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circulation research 93(2):96-105.
23.Fukuoka T, et al. (1998) Change in mRNAs for neuropeptides and the GABA(A) receptor in dorsal root ganglion neurons in a rat experimental neuropathic pain model. Pain 78(1):13-26.
24.Fyffe RE, Cheema SS, &; Rustioni A (1986) Intracellular staining study of the feline cuneate nucleus. I. Terminal patterns of primary afferent fibers. Journal of neurophysiology 56(5):1268-1283.
25.Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends in neurosciences 14(2):60-67.
26.Garthwaite J &; Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annual review of physiology 57:683-706.
27.Gildenberg PL &; Hirshberg RM (1984) Limited myelotomy for the treatment of intractable cancer pain. Journal of neurology, neurosurgery, and psychiatry 47(1):94-96.
28.Gonzalez-Hernandez T &; Rustioni A (1999) Nitric oxide synthase and growth-associated protein are coexpressed in primary sensory neurons after peripheral injury. The Journal of comparative neurology 404(1):64-74.
29.Grass S, Crawley JN, Xu XJ, &; Wiesenfeld-Hallin Z (2003) Reduced spinal cord sensitization to C-fibre stimulation in mice over-expressing galanin. The European journal of neuroscience 17(9):1829-1832.
30.Gresle MM, et al. (2008) Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis. Journal of neuroscience research 86(16):3548-3555.
31.Guan Y, Yaster M, Raja SN, &; Tao YX (2007) Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Molecular pain 3:29.
32.Hains BC, et al. (2003) Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 23(26):8881-8892.
33.Hall SM &; Gregson NA (1971) The in vivo and ultrastructural effects of injection of lysophosphatidyl choline into myelinated peripheral nerve fibres of the adult mouse. Journal of cell science 9(3):769-789.
34.Hao JX, et al. (1999) Intrathecal galanin alleviates allodynia-like behaviour in rats after partial peripheral nerve injury. The European journal of neuroscience 11(2):427-432.
35.He XH, et al. (2010) TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain 151(2):266-279.
36.Hervera A, Negrete R, Leanez S, Martin-Campos JM, &; Pol O (2010) The spinal cord expression of neuronal and inducible nitric oxide synthases and their contribution in the maintenance of neuropathic pain in mice. PloS one 5(12):e14321.
37.Hirai T, Schwark HD, Yen CT, Honda CN, &; Jones EG (1988) Morphology of physiologically characterized medial lemniscal axons terminating in cat ventral posterior thalamic nucleus. Journal of neurophysiology 60(4):1439-1459.
38.Hobson SA, Holmes FE, Kerr NC, Pope RJ, &; Wynick D (2006) Mice deficient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour. Journal of neurochemistry 99(3):1000-1010.
39.Hokfelt T (2005) Galanin and its receptors: introduction to the Third International Symposium, San Diego, California, USA, 21-22 October 2004. Neuropeptides 39(3):125-142.
40.Hokfelt T, Wiesenfeld-Hallin Z, Villar M, &; Melander T (1987) Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neuroscience letters 83(3):217-220.
41.Holmes FE, et al. (2003) Transgenic overexpression of galanin in the dorsal root ganglia modulates pain-related behavior. Proceedings of the National Academy of Sciences of the United States of America 100(10):6180-6185.
42.Holmes FE, Mahoney SA, &; Wynick D (2005) Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides 39(3):191-199.
43.Honore P, et al. (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99(1-2):11-19.
44.Imbe H, et al. (2004) Increase of galanin-like immunoreactivity in rat hypothalamic arcuate neurons after peripheral nerve injury. Neuroscience letters 368(1):102-106.
45.Inoue M, et al. (2008) Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 152(2):296-298.
46.Jin WY, Liu Z, Liu D, &; Yu LC (2010) Antinociceptive effects of galanin in the central nucleus of amygdala of rats, an involvement of opioid receptors. Brain research 1320:16-21.
47.Kage K, et al. (2002) Alteration of dorsal root ganglion P2X3 receptor expression and function following spinal nerve ligation in the rat. Experimental brain research 147(4):511-519.
48.Kask K, Berthold M, &; Bartfai T (1997) Galanin receptors: involvement in feeding, pain, depression and Alzheimer''s disease. Life sciences 60(18):1523-1533.
49.Kask K, Langel U, &; Bartfai T (1995) Galanin--a neuropeptide with inhibitory actions. Cellular and molecular neurobiology 15(6):653-673.
50.Kawasaki Y, et al. (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nature medicine 14(3):331-336.
51.Keimpema E, et al. (2013) GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain. Cerebral cortex (New York, N.Y. : 1991).
52.Kerr BJ, et al. (2000) Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury. The European journal of neuroscience 12(3):793-802.
53.Lang R, Gundlach AL, &; Kofler B (2007) The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacology &; therapeutics 115(2):177-207.
54.Lang R &; Kofler B (2011) The galanin peptide family in inflammation. Neuropeptides 45(1):1-8.
55.Lindia JA, Kohler MG, Martin WJ, &; Abbadie C (2005) Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats. Pain 117(1-2):145-153.
56.Liu HX &; Hokfelt T (2002) The participation of galanin in pain processing at the spinal level. Trends in pharmacological sciences 23(10):468-474.
57.Ma W &; Bisby MA (1997) Differential expression of galanin immunoreactivities in the primary sensory neurons following partial and complete sciatic nerve injuries. Neuroscience 79(4):1183-1195.
58.Ma W &; Bisby MA (1998) Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain research 797(2):243-254.
59.Ma W &; Bisby MA (1998) Partial and complete sciatic nerve injuries induce similar increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in primary sensory neurons and their central projections. Neuroscience 86(4):1217-1234.
60.Ma W &; Bisby MA (1999) Ultrastructural localization of increased neuropeptide immunoreactivity in the axons and cells of the gracile nucleus following chronic constriction injury of the sciatic nerve. Neuroscience 93(1):335-348.
61.Ma W &; Bisby MA (2000) Partial sciatic nerve ligation induced more dramatic increase of neuropeptide Y immunoreactive axonal fibers in the gracile nucleus of middle-aged rats than in young adult rats. Journal of neuroscience research 60(4):520-530.
62.Miclescu A &; Gordh T (2009) Nitric oxide and pain: ''Something old, something new''. Acta anaesthesiologica Scandinavica 53(9):1107-1120.
63.Nagy I, Santha P, Jancso G, &; Urban L (2004) The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. European journal of pharmacology 500(1-3):351-369.
64.Nahin RL, Ren K, De Leon M, &; Ruda M (1994) Primary sensory neurons exhibit altered gene expression in a rat model of neuropathic pain. Pain 58(1):95-108.
65.Nassar MA, et al. (2006) Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Molecular pain 2:33.
66.Natarajan V, Yao JK, Dyck PJ, &; Schmid HH (1982) Early stimulation of phosphatidylcholine biosynthesis during Wallerian degeneration of rat sciatic nerve. Journal of neurochemistry 38(5):1419-1428.
67.Nathan PW, Smith MC, &; Cook AW (1986) Sensory effects in man of lesions of the posterior columns and of some other afferent pathways. Brain : a journal of neurology 109 ( Pt 5):1003-1041.
68.North RA &; Jarvis MF (2013) P2X receptors as drug targets. Molecular pharmacology 83(4):759-769.
69.O''Donnell D, Ahmad S, Wahlestedt C, &; Walker P (1999) Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. The Journal of comparative neurology 409(3):469-481.
70.Patterson JT, Coggeshall RE, Lee WT, &; Chung K (1990) Long ascending unmyelinated primary afferent axons in the rat dorsal column: immunohistochemical localizations. Neuroscience letters 108(1-2):6-10.
71.Patterson JT, Head PA, McNeill DL, Chung K, &; Coggeshall RE (1989) Ascending unmyelinated primary afferent fibers in the dorsal funiculus. The Journal of comparative neurology 290(3):384-390.
72.Racz GB, McCarron RF, &; Talboys P (1989) Percutaneous dorsal column stimulator for chronic pain control. Spine 14(1):1-4.
73.Ramer MS, Ma W, Murphy PG, Richardson PM, &; Bisby MA (1998) Galanin expression in neuropathic pain: friend or foe? Annals of the New York Academy of Sciences 863:390-401.
74.Schafers M, Geis C, Svensson CI, Luo ZD, &; Sommer C (2003) Selective increase of tumour necrosis factor-alpha in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. The European journal of neuroscience 17(4):791-804.
75.Shealy CN, Mortimer JT, &; Hagfors NR (1970) Dorsal column electroanalgesia. Journal of neurosurgery 32(5):560-564.
76.Shi TJ, Cui JG, Meyerson BA, Linderoth B, &; Hokfelt T (1999) Regulation of galanin and neuropeptide Y in dorsal root ganglia and dorsal horn in rat mononeuropathic models: possible relation to tactile hypersensitivity. Neuroscience 93(2):741-757.
77.Shi TJ, et al. (1998) Effect of peripheral nerve injury on cGMP and nitric oxide synthase levels in rat dorsal root ganglia: time course and coexistence. Pain 78(3):171-180.
78.Shubayev VI, et al. (2006) TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Molecular and cellular neurosciences 31(3):407-415.
79.Skofitsch G &; Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6(3):509-546.
80.Souslova V, et al. (2000) Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407(6807):1015-1017.
81.Spiegelmann R &; Friedman WA (1991) Spinal cord stimulation: a contemporary series. Neurosurgery 28(1):65-70; discussion 70-61.
82.Sten Shi TJ, Zhang X, Holmberg K, Xu ZQ, &; Hokfelt T (1997) Expression and regulation of galanin-R2 receptors in rat primary sensory neurons: effect of axotomy and inflammation. Neuroscience letters 237(2-3):57-60.
83.Szallasi A &; Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacological reviews 51(2):159-212.
84.Takeda M, Imada K, Sato T, &; Ito A (2000) Activation of human progelatinase A/promatrix metalloproteinase 2 by Escherichia coli-derived serine proteinase. Biochemical and biophysical research communications 268(1):128-132.
85.Tamatani M, Senba E, &; Tohyama M (1989) Calcitonin gene-related peptide- and substance P-containing primary afferent fibers in the dorsal column of the rat. Brain research 495(1):122-130.
86.Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, &; Mutt V (1983) Galanin - a novel biologically active peptide from porcine intestine. FEBS letters 164(1):124-128.
87.Thippeswamy T, Jain RK, Mumtaz N, &; Morris R (2001) Inhibition of neuronal nitric oxide synthase results in neurodegenerative changes in the axotomised dorsal root ganglion neurons: evidence for a neuroprotective role of nitric oxide in vivo. Neuroscience research 40(1):37-44.
88.Thippeswamy T &; Morris R (1997) Cyclic guanosine 3'',5''-monophosphate-mediated neuroprotection by nitric oxide in dissociated cultures of rat dorsal root ganglion neurones. Brain research 774(1-2):116-122.
89.Tominaga M, et al. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531-543.
90.Tracey DJ, Romm MA, &; Yao NN (1995) Peripheral hyperalgesia in experimental neuropathy: exacerbation by neuropeptide Y. Brain research 669(2):245-254.
91.Tsai YJ, et al. (2009) Neuropeptide Y modulates c-Fos protein expression in the cuneate nucleus and contributes to mechanical hypersensitivity following rat median nerve injury. Journal of neurotrauma 26(9):1609-1621.
92.Tsai YJ, Lin CT, &; Lue JH (2007) Characterization of the induced neuropeptide Y-like immunoreactivity in primary sensory neurons following complete median nerve transection. Journal of neurotrauma 24(12):1878-1888.
93.Ueda H (2008) Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Molecular pain 4:11.
94.Villar MJ, et al. (1989) Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 33(3):587-604.
95.Vulchanova L, et al. (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proceedings of the National Academy of Sciences of the United States of America 93(15):8063-8067.
96.Walker KM, et al. (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. The Journal of pharmacology and experimental therapeutics 304(1):56-62.
97.Wall PD, et al. (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7(2):103-111.
98.Wallace VC, Cottrell DF, Brophy PJ, &; Fleetwood-Walker SM (2003) Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids. The Journal of neuroscience : the official journal of the Society for Neuroscience 23(8):3221-3233.
99.Wang HY, Tsai YJ, Chen SH, Lin CT, &; Lue JH (2013) Lysophosphatidylcholine causes neuropathic pain via the increase of neuronal nitric oxide synthase in the dorsal root ganglion and cuneate nucleus. Pharmacology, biochemistry, and behavior 106:47-56.
100.Wang S, Hashemi T, Fried S, Clemmons AL, &; Hawes BE (1998) Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 37(19):6711-6717.
101.White DM (1997) Intrathecal neuropeptide Y exacerbates nerve injury-induced mechanical hyperalgesia. Brain research 750(1-2):141-146.
102.Wiesenfeld-Hallin Z, Xu XJ, Crawley JN, &; Hokfelt T (2005) Galanin and spinal nociceptive mechanisms: recent results from transgenic and knock-out models. Neuropeptides 39(3):207-210.
103.Wilson NM, Jung H, Ripsch MS, Miller RJ, &; White FA (2011) CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain, behavior, and immunity 25(3):565-573.
104.Wilson-Gerwing TD &; Verge VM (2006) Neurotrophin-3 attenuates galanin expression in the chronic constriction injury model of neuropathic pain. Neuroscience 141(4):2075-2085.
105.Wood PL, et al. (1990) Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-, kainate-, harmaline-, and pentylenetetrazole-dependent increases in cerebellar cyclic GMP in vivo. Journal of neurochemistry 55(1):346-348.
106.Woolf CJ (1993) The pathophysiology of peripheral neuropathic pain--abnormal peripheral input and abnormal central processing. Acta neurochirurgica. Supplementum 58:125-130.
107.Zhang SC &; Kern M (2009) The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. International journal of oral science 1(4):163-176.
108.Zhou J, Holtzman DM, Weiner RI, &; Mobley WC (1994) Expression of TrkA confers neuron-like responsiveness to nerve growth factor on an immortalized hypothalamic cell line. Proceedings of the National Academy of Sciences of the United States of America 91(9):3824-3828.
109.Zhou Y, Li GD, &; Zhao ZQ (2003) State-dependent phosphorylation of epsilon-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury. Journal of neurochemistry 85(3):571-580.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊