張志強(1987),「整數規劃在集群分析上之應用研究」,國立政治大學統計學研究所碩士論文Ahuja, R.K., Magnanti, T.L., & Orlin, J.B. (1993). Network flows: Theory, algorithms, and applications.
Al‐Sultan, K., & Al‐Fawzan, M. (1999). A tabu search approach to the uncapacitated facility location problem. Annals of Operations Research, 86, 91-103.
Allwright, J. R., & Carpenter, D. B. (1989). A distributed implementation of simulated annealing for the travelling salesman problem. Parallel Computing, 10(3), 335-338.
Álvarez, P., López-Rodríguez, F., Canito, J.L., Moral, F.J., & Camacho, A. (2007). Development of a measure model for optimal planning of maintenance and improvement of roads. Computers & Industrial Engineering, 52(3), 327-335.
Bellman, R. (1973). A note on cluster analysis and dynamic programming. Mathematical Biosciences, 18(3), 311-312.
Bilde, O., & Krarup, J. (1977). Sharp lower bounds and efficient algorithms for the simple plant location problem. Annals of Discrete Mathematics. v1, 79-88.
Carlyle, W.M., Royset, J.O., & Kevin Wood, R. (2008). Lagrangian relaxation and enumeration for solving constrained shortest‐path problems. Networks, 52(4), 256-270.
Cornuéjols, G., Fisher, M., & Nemhauser, G.L. (1977). On the uncapacitated location problem. Annals of Discrete Mathematics, 1, 163-177.
Cornuejols, G., Nemhauser, G. L., & Wolsey, L. A. (1990). The uncapacitated facility location problem. In R. L. Francis & P. B. Mirchandani (Eds.), Discrete location theory (pp. 119–171). New York: Wiley
Drexl, A. (1988). A simulated annealing approach to the multiconstraint zero-one knapsack problem. Computing, 40(1), 1-8.
Erlenkotter, D. (1978). A dual-based procedure for uncapacitated facility location. Operations Research, 26(6), 992-1009.
Fisher, W.D. (1958). On grouping for maximum homogeneity. Journal of the American Statistical Association, 53(284), 789-798.
Fox, B. L.(1975). Kth shortest paths and applications to the probabilistic networks, in ORSA/TIMS Joint National Mtg., Vol. 23, p. B263
Frank, C., & Römer, K. (2007). Distributed facility location algorithms for flexible configuration of wireless sensor networks Distributed computing in sensor systems (pp. 124-141): Springer.
Gao, L.L., & Robinson, E.P. (1992). A dual‐based optimization procedure for the two‐echelon uncapacitated facility location problem. Naval Research Logistics (NRL), 39(2), 191-212.
Ghosh, D. (2003). Neighborhood search heuristics for the uncapacitated facility location problem. European Journal of Operational Research, 150(1), 150-162.
Guha, S., & Khuller, S. (1998). Greedy strikes back: Improved facility location algorithms. Paper presented at the Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms.
Handler, G.Y., & Zang, I. (1980). A dual algorithm for the constrained shortest path problem. Networks, 10(4), 293-309.
Hansen, P., & Jaumard, B. (1997). Cluster analysis and mathematical programming. Mathematical programming, 79(1-3), 191-215.
Jensen, R.E. (1969). A dynamic programming algorithm for cluster analysis. Operations Research, 1034-1057.
Klose, A., & Drexl, A. (2005). Facility location models for distribution system design. European Journal of Operational Research, 162(1), 4-29.
Körkel, M. (1989). On the exact solution of large-scale simple plant location problems. European Journal of Operational Research, 39(2), 157-173.
Lawler, E.L. Combinatorial optimization: Networks and matroids. 1976. Holt, Rinehart and Winston, New York, 3.
Lawler, E.L. (1972). A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Management Science, 18(7), 401-405.
Lazic, N., Frey, B.J., & Aarabi, P. (2010). Solving the uncapacitated facility location problem using message passing algorithms. Paper presented at the International Conference on Artificial Intelligence and Statistics.
Lazic, N., Givoni, I., Frey, B., & Aarabi, P. (2009). Floss: Facility location for subspace segmentation. Paper presented at the Computer Vision, 2009 IEEE 12th International Conference on.
Maffioli, F. (1987). Randomized heuristics for NP-hard problems. Advanced School on Stochastics in Combinatorial Optimization, World Scientific, Dordrecht, 76-93.
Mirzaian, A. (1985). Lagrangian relaxation for the star‐star concentrator location problem: Approximation algorithm and bounds. Networks, 15(1), 1-20.
Mulvey, J.M., & Crowder, H.P. (1979). Cluster analysis: An application of lagrangian relaxation. Management Science, 25(4), 329-340.
Nemhauser, G.L., Wolsey, L.A., & Fisher, M.L. (1978). An analysis of approximations for maximizing submodular set functions—I. Mathematical Programming, 14(1), 265-294.
Novick, B. (2009). Norm statistics and the complexity of clustering problems. Discrete Applied Mathematics, 157(8), 1831-1839.
Ouyang, Y., & Madanat, S. (2006). An analytical solution for the finite-horizon pavement resurfacing planning problem. Transportation Research Part B: Methodological, 40(9), 767-778. doi: 10.1016/j.trb.2005.11.001
Rao, M. (1971). Cluster analysis and mathematical programming. Journal of the American statistical association, 66(335), 622-626.
Shier, D.R. (1979). On algorithms for finding the k shortest paths in a network. Networks, 9(3), 195-214.
Shmoys, D.B., Tardos, É., & Aardal, K. (1997). Approximation algorithms for facility location problems. Paper presented at the Proceedings of the twenty-ninth annual ACM symposium on Theory of computing.
Sun, M. (2006). Solving the uncapacitated facility location problem using tabu search. Computers & Operations Research, 33(9), 2563-2589.
Tsai, Y., Yang, C., & Wang, Z. (2006). Spatial clustering for determining economical highway pavement let projects. Proceedings of Geo Congress, 1-6.
Van der Zijpp, N.J., & Fiorenzo Catalano, S. (2005). Path enumeration by finding the constrained k-shortest paths. Transportation Research Part B: Methodological, 39(6), 545-563. doi: 10.1016/j.trb.2004.07.004
Verter, V. (2011). Uncapacitated and capacitated facility location problems Foundations of location analysis (pp. 25-37): Springer.
Vinod, H.D. (1969). Integer programming and the theory of grouping. Journal of the American Statistical Association, 64(326), 506-519.
Wang, I.L., Tsai, Y.-C.J., & Li, F. (2011). A network flow model for clustering segments and minimizing total maintenance and rehabilitation cost. Computers & Industrial Engineering, 60(4), 593-601.
Xiao, Y., Thulasiraman, K., Xue, G., & Jüttner, A. (2005). The constrained shortest path problem: Algorithmic approaches and an algebraic study with generalization. submitted for publication.
Yang, C., Tsai, Y.J., & Wang, Z. (2009). Algorithm for spatial clustering of pavement segments. Computer‐Aided Civil and Infrastructure Engineering, 24(2), 93-108.
Yen, J.Y. (1971). Finding the k shortest loopless paths in a network. management Science, 17(11), 712-716.