跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭皓文
研究生(外文):Cheng, Hao-Wen
論文名稱:扭轉與水平排列之向列液晶的 電壓保持率與殘餘直流電壓特性
論文名稱(外文):Voltage-Holding-Ratio and Residual-DC-Voltage Characteristics of Twisted-Nematic and Planar-Alignment Liquid-Crystal Cells
指導教授:李偉李偉引用關係
指導教授(外文):Lee, Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:電壓保持率殘餘直流電壓資料擷取量測系統
外文關鍵詞:VHRRDCdata acquisitionmeasuring system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
本論文係就薄膜電晶體液晶顯示器工業檢測技術所需,設計出結合液晶盒電壓保持率、殘餘直流電壓特性與自動化溫度控制電路的多功能量測設備。為提高此裝置的應用性及量測範圍,本團隊利用簡單的溫度控制系統之電子電路搭配加熱晶片與散熱系統,整合現有系統電路及整體裝置架構,透過資料擷取裝置與虛擬儀控介面達到量測與數值分析高度自動化的結果,提出具可攜式、易操作、高準確性及廣泛應用之溫度可調式液晶盒量測裝置,並且用來探討扭轉與水平排列之向列液晶的電壓保持率與殘餘直流電壓特性。

According to the requirement on the detection of display performance in thin film transistor liquid crystal display (TFTLCD), a multi-functional instrument for the measurement of voltage holding ratio (VHR), residual direct current (RDC), and electro-optical characteristics of liquid crystal cells have been developed by our research group. In order to expand the application field and measurement range for abovementioned parameters, in this study, a simple temperature-control system consisting of heating chips and cooling systems is designed and combined into our proposed instrument. We also integrate various types of circuits and whole framework for the instrument to obtain highly automatic measurement and numerical analysis through the data acquisition and interface of virtual instrument control. Furthermore, electrical properties such as the VHR and RDC, of twisted nematic and planar-aligned liquid crystal cells under specific measuring conditions are presented.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
第一章 緒論 1
1.1 離子電荷對液晶顯示元件的影響 1
1.2 液晶盒內之離子來源 2
1.3 離子效應研究方式 4
1.4 本研究目的與論文架構 7
第二章 理論背景 8
2.1 離子電荷模型 8
2.2 電壓保持率與殘餘直流電壓的研究進展 10
2.3 電壓保持率與殘餘直流電壓的量測原理 12
2.3.1 電壓保持率量測原理 12
2.3.2 殘餘直流電壓量測原理 15
第三章 樣品製作與實驗儀器開發 20
3.1 材料 20
3.2 液晶樣品盒 20
3.3 實驗裝置與量測 21
3.3.1 電壓保持率之量測 21
3.3.2 殘餘直流電壓之量測 22
3.3.3 自動化溫度控制系統 23
3.3.4 通訊軟體 24
3.3.5 整合型量測系統 25
第四章 實驗結果與討論 28
4.1 電壓保持率的量測 28
4.1.1 儀器穩定度 29
4.1.2 液晶盒長時間放置影響 30
4.1.3 頻率與電壓保持率 31
4.1.4 變電壓之電壓保持率 32
4.1.5 偏壓對電壓保持率的影響 32
4.1.6 溫度對電壓保持率的影響 33
4.2 殘餘直流電壓的量測 33
4.2.1 溫度對殘餘直流電壓的影響 34
4.3 UV曝曬對液晶盒的影響 36
第五章 結論與未來展望 38
參考文獻 40
附錄一 液晶CYLC-01之物理特性 76
附錄二 液晶ZLI-2293之物理特性 77
附錄三 液晶E7之物理特性 78
附錄四 液晶E44之物理特性 79
附錄五 液晶材料重要參數比較表 80
附錄六 配向劑SE-2170 81
附錄七 美相液晶盒 82

[1] I.-K. Huh and Y.-B. Kim, “Fluoro-isothiocyanated liquid crystal materials with high dielectric anisotropy and voltage holding ratio,” Japanese Journal of Applied Physics 41(11A), 6466–6470 (2002).
[2] M. Nishikawa, T. Suganuma, Y. Tsuda, N. Bessho, Y. Iimura, and S. Kobayashi, “Properties of voltage holding ratio of liquid crystal cells using organic-solvent-soluble polyimide alignment films,” Japanese Journal of Applied Physics 33(8A), 1113–1116 (1994).
[3] 陳伯綸,《離子電荷效應對液晶盒物理特性之影響》,博士論文,交通大學光電工程研究所,民89年6月。
[4] T. Nakanishi, T. Takahashi, H. Mada, and S. Sato, “Transient behavior of voltage holding ratio in nematic liquid crystal cells,” Japanese Journal of Applied Physics 41(6A), 3752–3757 (2002).
[5] W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Applied Physics Letters 85(4), 513–515 (2004).
[6] C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liquid Crystals 21(1), 133–142 (1996).
[7] W. Lee, J.-S Gua, and H.-Y. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Applied Physics B: Lasers and Optics 81(2/3), 171–175 (2005).
[8] H.-Y. Chen and W. Lee, “Electro-optical characteristics of a twisted nematic liquid-crystal cell doped with carbon nanotubes in a DC electric field,” Optical Review 12(3), 223–225 (2005).
[9] H. Mada and H. Suzuki, “Reverse hysteresis loop of nematic liquid crystals in C–V characteristic due to static electric field,” Japanese Journal of Applied Physics 26(7), L1092–L1094 (1987).
[10] P.-L. Chen and S.-H. Chen, “Anomalous capacitance bounces and bumps of liquid crystal cells in dc electric fields,” Japanese Journal of Applied Physics 39(4A), L297–L299 (2000).
[11] H. Mada and S. Yoshino, “Absorption current and impurity ions in nematic liquid crystal cells,” Japanese Journal of Applied Physics 27(8), L1361–L1364 (1988).
[12] H. Naito, M. Okuda, and A. Sugimura, “Transient discharging processes in nematic liquid crystals,” Physical Review A 44(6), 3434–3437 (1991).
[13] 唐振育,《添加二氧化鈦奈米粒子液晶盒之光電與電學特性》,碩士論文,中原大學應用物理研究所,民100年1月。
[14] 王俊才,《劣化與還原液晶之光電及電學特性》,碩士論文,中原大學應用物理研究所,民100年1月。
[15] M. Imai, H. Naito, M. Okuda, and A. Sugimura, “Determination of rotational viscosity of nematic liquid crystals from transient current: numerical analysis and experiment,” Japanese Journal of Applied Physics 33(6A), L3482–L3487 (1996).
[16] 林威廷,《高分子分散型液晶之介面極化》,碩士論文,中原大學應用物理研究所,民101年7月。
[17] S. Uemura, “Ionic contribution to the complex dielectric constant of a polymer under dc bias,” Journal of Polymer Science: Polymer Physics Edition 10(11), 2155–2166 (2009).
[18] N. Toshima, “Polymer-Metal Nanoparticle Complexes for Improving the Performance of Liquid Crystal Displays,” Macromolecular Symposia 304, 24–32 (2011).
[19] Y. Nakazono, T. Takagi, A. Sawada, and S. Naemura, “Evaluation of residual DC of LC cell,” Proceedings of the 5th Asian Symposium on Information Display, 219–222 (1999).
[20] Y. Nakazono, H. Ichinose, M. Bremer, and K. Tarumi, “Characterization of LC materials with negative dielectric anisotropy for active matrix LCDs,” Journal of the Society for Information Display, 65–68 (1999).
[21] A. Sawada, H. Sato, and Y. Nakazono, “Influence of Ions in LC Materials on Optical Threshold Voltage of Passively Addressed LCDs,” Journal of the Society for Information Display, 190–193 (1999).
[22] H. Seiberle and M. Schadt, “LC-conductivity and cell parameters: Their influence on twisted nematic and supertwistednematic liquid crystal displays,” Molecular Crystals and Liquid Crystals 239(1), 229–244 (1994).
[23] N. Sasaki, “Simulation of the voltage holding ratio in liquid crystal displays with a constant charge model,” Japanese Journal of Applied Physics 37(11), 6065–6070 (1998).
[24] T. Nakanishi, T. Takahashi, H. Mada, and S. Saito, “Transient behavior of voltage holding ratio in nematic liquid crystal cells,” Japanese Journal of Applied Physics 41(6A), 3752–3757 (2002).
[25] M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching on nematic liquid crystals,” Japanese Journal of Applied Physics 36(8A), 1025–1028 (1997).
[26] Y.-J. Jeon, J.-Y. Hwang, and D.-S. Seo, “Voltage holding ratio and residual DC property of the IPS-LCD on rubbed polymer layers by voltage-transmittance hysteresis method,” Molecular Crystals and Liquid Crystals 410(369), 897–908 (2004).
[27] M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” Journal of Applied Physics 102(1), 014904-1–6 (2007).
[28] C.-Y. Tang, S.-M. Huang, and W. Lee, “Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles,” Journal of Physics D: Applied Physics 44, 355102–355106 (2011).
[29] M. Inoue, K. Takatoh, and S. Kobayashi, “Recent measurement of liquid crystal material characteristics,” Proceedings of the 13th International Display Workshops, 647–650 (2006).
[30] M. Heckmeier, G. Lussem, K. Tarumi, and W. Becker, “Liquid Crystals for Active Matrix Displays,” MERCK (2009).
[31] 胡建霆,《層化高分子/液晶複合薄膜的電壓保持率與殘餘直流電壓特性》,碩士論文,中原大學應用物理研究所,民98年7月。
[32] C. K. Alexander and M. N. O. Sadiku, Fundamentals of Electric Circuits (McGraw-Hill, New York, 2007).
[33] H.-C. Moon, Y.-H. Bae, J.-Y. Hwang, K.-W. Kim, and D.-S. Seo, “Residual DC characteristic on twisted nematic liquid crystal display on the polyimide surface by the thermal stress,” Molecular Crystals and Liquid Crystals 443(1), 161–166 (2005).
[34] A. R. M. Verschueren, P. Kohsiek, M. T. Johnson, and R. van Asselt, “DC current measurements on liquid crystal cells as indicative tool for image retention phenomena,” Journal of the Society for Information Display, 55–58 (2000).
[35] M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” Journal of Applied Physics 112, 044510-1–9 (2012).
[36] M. Oh-E, and K. Kondo, “Advantageous voltage-holding ratio characteristics induced by in-plane electric fields, and the optimization concept of liquid crystals for an in-plane switching electro-optical effect,” Liquid Crystals 25(6), 699–709 (1998).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top