跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝孟軒
研究生(外文):Meng-Hsuan Hsieh
論文名稱:摻雜氧化鎂鈮酸鋰之帶狀波導大溫度頻寬綠光雷射晶片之研製
論文名稱(外文):Design and Fabrication of Periodically Poled Magnesium-Doped Lithium Niobate Strip Waveguide Green Lasers with Large Temperature Bandwidth
指導教授:王維新王維新引用關係
口試委員:胡振國彭隆瀚王子建
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:77
中文關鍵詞:氧化鎂鈮酸鋰綠光雷射週期性極化反轉鈮酸鋰準相位匹配
外文關鍵詞:Magnesium-Doped Lithium NiobateGreen LaserPPLNQPM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文以摻雜氧化鎂鈮酸鋰為基板,利用啁啾型光柵在其上製作長為5mm之多週期反轉結構帶狀波導,目的為利用1064nm基頻光耦合至光波導,經由準相位匹配倍頻產生532nm綠光,並量測其輸出之溫度頻寬和光功率。
波導製程方面本論文使用鋅鎳共同擴散式波導與鎵擴散式波導,其中鋅鎳共同擴散式波導線寬為160μm,膜厚100nm,在擴散溫度880℃下擴散3小時,可導TM和TE模態光,符合前人所作之極化與製程相依性 ; 鎵擴散式波導線寬為160μm,膜厚120nm,在擴散溫度980℃下擴散2小時,可單導TM模態。
本論文在綠光量測方面,以最大能量8mW之1064nm基頻光入射於晶片之波導,未製作波導之晶片,其溫度頻寬為60℃,倍頻轉換效率為9.9%。鋅鎳共同擴散式波導,其溫度頻寬增加為80℃,倍頻轉換效率提高為15.4% ; 鎵擴散式波導,其溫度頻寬增加為85℃,倍頻轉換效率提高為13.9%。此結果說明了在週期性極化反轉結構上加上光波導,也就是增加了光場侷限性,有助於溫度頻寬和倍頻轉換效率的提升。


Abstract
Magnesium-doped lithium niobate substrates are used for the design and fabrication of waveguides on a 5 mm long segment-chirped grating structure. Green laser of wavelength 532 nm is obtained by the quasi-phase matching second harmonic generation (QPM-SHG), when launched with an incident laser of wavelength 1064nm.
On the part of waveguide fabrication, two waveguides are fabricated by zinc-and-nickel co-diffusion and gallium diffusion in this thesis. The zinc-and-nickel co-diffusion waveguides have linewidth of 160 μm and film thickness of 100 nm, which were diffused for 3 hr at 880 ˚C. The gallium diffusion waveguides have linewidth of 160 μm and film thickness of 120 nm, which were diffused for 2 hr at 980 ˚C. TM and TE modes are supported in the zinc-and-nickel co-diffusion waveguides, but only TM modes are supported in the gallium diffusion waveguides, which agrees quite well with those reported previously.
On the part of green laser measurement, an incident laser of maximum power 8mW with wavelength 1064 nm is launched into the sample. The sample without waveguides have temperature bandwidth of 60 ˚C, and green laser conversion efficiencies of 9.9%. The zinc-and-nickel co-diffusion waveguides have a larger temperature bandwidth of 80 ˚C, and a higher green laser conversion efficiencies of 15.4%. Similarly, the gallium diffusion waveguides have a larger temperature bandwidth of 85 ˚C, and a higher green laser conversion efficiencies of 13.9%.
Experimental results show the temperature bandwidth and conversion efficiencies are both increased owing to the proposed waveguide structures provided better optical confinement.


目錄
中文摘要
英文摘要
目錄
附表目錄
附圖目錄
第一章 緒論……………………………………………………………..1
1-1 研究背景….……………...………………………………..1
1-2 研究動機………………...………………………………...3
1-3 內容簡介……………...…………………………………4
第二章 光波導及非線性光學原理……………………………………..5
2-1 鈮酸鋰簡介……………………………………………...5
2-2 光波導介紹………………………………………………11
2-3鋅鎳及鎵擴散式鈮酸鋰光波導…………………………..13
2-3-1平面波導折射率模型……………….................13
2-3-2 鎵擴散式鈮酸鋰光波導………………………….14
2-3-3 鋅鎳共同擴散式鈮酸鋰光波導……………….15
2-4 非線性光學簡介………………………………..………..18
2-5 準相位匹配理論介紹……...…………………………….25
2-6 可接受波長頻寬與溫度頻寬……...……………………29
2-7 增加可接受波長頻寬與溫度頻寬……...………………31
2-7-1級聯結增加可接受頻寬……………….................33
第三章 週期性極化反轉與光波導元件製作………………………....36
3-1 週期性極化反轉製作與結果……………………………36
3-1-1 區段啁啾型光柵設計......………………………….36
3-1-2 高電壓致使極化反轉介紹......…………………….38
3-1-3高電壓致使極化反轉設備架構……..……………..40
3-1-4週期性極化反轉製作與結果…………..………..42
3-1 鋅鎳共同擴散與鎵擴散帶狀波導製作…………………45

第四章 光學量測與分析………………………………………………53
4-1波導之光場量測架構……………………………………53
4-1-1光場分析圖…………………..……………………54

4-2 綠光倍頻轉換量測架構…………………………………55
4-3 綠光倍頻量測結果與分析………………………………57
4-3-1無波導區域反轉之量測…………………..…………58
4-3-2鋅鎳波導區域反轉之量測…………………..………59
4-3-3鎵波導區域反轉之量測…………………..…………60
第五章 結論……………………………………………………………62
參考文獻………………………………………………………………..64
中英文名詞對照表…………………………………………………….70


參考文獻
[1] P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett., vol.7, pp. 118-119,1961.

[2] J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp.1918-1939, 1962.

[3] M. Uebernickel, C. Fiebig, G. Blume, K. Paschke, B. Eppich, R. Güther, and G. Erbert, “400 mW and 16.5% wavelength conversion efficiency at 488 nm using a diode laser and a PPLN crystal in single pass configuration,” Jpn. J. Appl. Phys., vol. 93, pp. 823-827, 2008.

[4] Y. Kitaoka, T. Yokoyama, K. Mizuuchi, and K. Yamamoto, “Miniaturized blue laser using second harmonic generation,” Jpn. J. Appl. Phys., vol.39 no. 6A, pp.3416-3418, 2000.

[5] K. Sakai, Y. Koyata, N. Shimada, K. Shibata, Y. Hanamaki, S. Itakura, T. Yagi, and Y. Hirano1, “Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO:PPLN waveguide,” Opt. Lett., vol., 33, no.5, pp. 431-433,2008.

[6] C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett., vol., 30, no.13, pp. 1725-1727,2005.

[7] Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “ All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” J.l of the Optical Society of America, vol.13, no.8, pp. 2988-2993, 2005.

[8] W M. Young and R. S. Feigelson, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett., vol. 16, no.13, pp. 995-997, 1991.

[9] 徐文浩,“鋅鎳擴散式鈮酸鋰光波導元件之特性與應用”,國立台灣大學光電工程學研究所博士論文,2006年。

[10] X. Zhen, R. Wang, W. Xu, Y. Xu, and L. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Optical Materials, pp.427-431, 2002.

[11] 黃文宏,“鎵擴散式鈮酸鋰光波導特性之研究”,國立台灣大 學光電工程學研究所博士論文,2008年。

[12] M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, “Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides,” J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978.

[13] J. L. Jackel, “Suppression of out diffusion in Ti diffused LiNbO3: a review,” J. Opt. Commun., vol. 3, pp. 82-85, 1982.

[14] Y.P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.

[15] R. L. Byer, J. F. Young, and Feigelso.Rs, “Growth of high-quality LiNbO3 crystals from congruent melt,” J. Appl. Phys., vol. 41, pp. 2320, 1970.

[16] INSPEC, Properties of Lithium Niobate, EMIS Datareviews, series no.5, 1989.

[17] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley,1984.

[18] K. Kitamura, Y. Furukawa, S.Takekawa, T. Hatanaka, H Ito, and V. Gopalan, “Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices,” Ferroelectrics, vol. 257, pp. 235-243, 2001.

[19] J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguide,” J. Appl. Phys., vol. 49, no. 6, pp. 3150-3154, 1978.

[20] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides,”IEEE Photon. Tech. Lett, vol. 4, no. 8, pp. 872-875, 1992.


[21] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.

[22] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. Laybourn, and D. L. Rue, “Characteristic of proton exchanges slab waveguide on Z-cut LiNbO3 waveguide,” J. Appl. Phys., vol. 40, pp. 6218-6220, 1983.

[23] V. M. N. Passaro, M. N. Armenise, D. Nesheva, and E. Y. B. Pun, “LiNbO3 optical waveguides formed in a new proton source,” J. Lightwave Tech., vol. 20, pp. 71-77, no. 1, 2002.

[24] R. G. Hunsperger, Intergrated Optics: Theory and Technology 5th Ed., Springer, 2002.

[25] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys., vol. 77, no. 2, pp. 686-693, Jan. 1995.

[26] X. H. Zhen, R. Wang, W. S. Xu, Y. H. Xu, and L. C. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Opt. Mater., vol. 19, pp. 427-431, 2002.

[27] 廖裕評,“金屬擴散式極化分離器之研製”,國立台灣大學電機工程學研究所博士論文,1996年。


[28] 徐文浩,“鋅鎳擴散式鈮酸鋰光在可調式極化分離器之應用”,國立台灣大學光電工程學研究所碩士論文,2001年。

[29] M. E. Glicksman, Diffusion in Soids : Filed Theory, Solid-State Principles, and Applications, Wiley, 2000.

[30] 李俊瑩,“摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製,”國立台灣大學光電工程學研究所碩士論文, 2009

[31]Kiminori Mizuuchi, Kazuhisa Yamamoto, “Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts,” Opt. Lett., vol. 23, no.24, pp.1880-1882, 1998

[32]Nan Ei Yu, Jung Hoon Ro, and Myoungsik Cha, Sunao Kurimura, Takunori Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett., vol. 27, no. 12, pp. 1046-1048, 2002

[33] M.L. Bortz, M. Fujimura and M.M. Fejer “Increased acceptance bandwidth for quasi-phase matched second harmonic generation in LiNbO3 waveguides,” Electron. Lett., vol. 30, no.1, pp.34-35, 1994

[34]Amirhossein Tehranchi and Raman Kashyap, “ Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation ” Joural of Lightwave Technology, vol. 26, no.3, pp. 343-349, 2008

[35] K. Nakamura, H. Ando, and H. Shirnizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett., vol. 50, no. 20, pp. 1413-1414, 1987.

[36] 溫建樹,“寬頻準相位匹配非線性過程應用於綠光與藍光產生之研究,”台灣大學光電工程學研究所碩士論文, 2010]

[37] 劉俊緯, “摻雜氧化鎂鈮酸鋰準相位匹配大溫度頻寬綠光倍頻雷射晶片研製”,國立台灣大學光電工程學研究所碩士論文,2010年。

[38] 林揆倫, “具脊狀波導結構之準相位匹配綠光倍頻晶體研究”,國立台灣大學光電工程學研究所碩士論文,2008年。

[39] G. D. Miller,Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance, 1998.

[40] 李俊瑩,“摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製”,國立台灣大學光電工程學研究所碩士論文,2009。

[41] 林垠呈,“摻雜氧化鎂鈮酸鋰之帶狀波導綠光倍頻雷射晶片之研製”,國立台灣大學光電工程學研究所碩士論文,2010。



[42] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. of the Optical Society of America B, vol. 12, pp. 2102, 1995.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊