參考文獻
[1] P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett., vol.7, pp. 118-119,1961.
[2] J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp.1918-1939, 1962.
[3] M. Uebernickel, C. Fiebig, G. Blume, K. Paschke, B. Eppich,  R. Güther, and G. Erbert, “400 mW and 16.5% wavelength conversion efficiency at 488 nm using a diode laser and a PPLN crystal in single pass configuration,” Jpn. J. Appl. Phys., vol. 93, pp. 823-827, 2008.
[4] Y. Kitaoka, T. Yokoyama, K. Mizuuchi, and K. Yamamoto, “Miniaturized blue laser using second harmonic generation,” Jpn. J. Appl. Phys., vol.39 no. 6A, pp.3416-3418, 2000.
[5] K. Sakai, Y. Koyata, N. Shimada, K. Shibata, Y. Hanamaki, S. Itakura, T. Yagi, and Y. Hirano1, “Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO:PPLN waveguide,” Opt. Lett., vol., 33, no.5, pp. 431-433,2008.
[6] C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett., vol., 30, no.13, pp. 1725-1727,2005.
[7] Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “ All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” J.l of the Optical Society of America, vol.13, no.8, pp. 2988-2993, 2005.
[8] W M. Young and R. S. Feigelson, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett., vol. 16, no.13, pp. 995-997, 1991.
[9] 徐文浩,“鋅鎳擴散式鈮酸鋰光波導元件之特性與應用”,國立台灣大學光電工程學研究所博士論文,2006年。[10] X. Zhen, R. Wang, W. Xu, Y. Xu, and L. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Optical Materials, pp.427-431, 2002.
[11] 黃文宏,“鎵擴散式鈮酸鋰光波導特性之研究”,國立台灣大     學光電工程學研究所博士論文,2008年。[12] M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, “Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides,” J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978.
[13] J. L. Jackel, “Suppression of out diffusion in Ti diffused LiNbO3: a review,” J. Opt. Commun., vol. 3, pp. 82-85, 1982.
[14] Y.P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.
[15] R. L. Byer, J. F. Young, and Feigelso.Rs, “Growth of high-quality LiNbO3 crystals from congruent melt,” J. Appl. Phys., vol. 41, pp. 2320, 1970.
[16] INSPEC, Properties of Lithium Niobate, EMIS Datareviews, series no.5, 1989.
[17] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley,1984.
[18] K. Kitamura, Y. Furukawa, S.Takekawa, T. Hatanaka, H Ito, and V. Gopalan, “Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices,” Ferroelectrics, vol. 257, pp. 235-243, 2001.
[19] J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguide,” J. Appl. Phys., vol. 49, no. 6, pp. 3150-3154, 1978.
[20] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides,”IEEE Photon. Tech. Lett, vol. 4, no. 8, pp. 872-875, 1992.
[21] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.
[22] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. Laybourn, and D. L. Rue, “Characteristic of proton exchanges slab waveguide on Z-cut LiNbO3 waveguide,” J. Appl. Phys., vol. 40, pp. 6218-6220, 1983.
[23] V. M. N. Passaro, M. N. Armenise, D. Nesheva, and E. Y. B. Pun, “LiNbO3 optical waveguides formed in a new proton source,” J. Lightwave Tech., vol. 20, pp. 71-77, no. 1, 2002.
[24] R. G. Hunsperger, Intergrated Optics: Theory and Technology 5th Ed., Springer, 2002.
[25] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys., vol. 77, no. 2, pp. 686-693, Jan. 1995.
[26] X. H. Zhen, R. Wang, W. S. Xu, Y. H. Xu, and L. C. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Opt. Mater., vol. 19, pp. 427-431, 2002.
[27] 廖裕評,“金屬擴散式極化分離器之研製”,國立台灣大學電機工程學研究所博士論文,1996年。[28] 徐文浩,“鋅鎳擴散式鈮酸鋰光在可調式極化分離器之應用”,國立台灣大學光電工程學研究所碩士論文,2001年。[29] M. E. Glicksman, Diffusion in Soids : Filed Theory, Solid-State Principles, and Applications, Wiley, 2000.
[30] 李俊瑩,“摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製,”國立台灣大學光電工程學研究所碩士論文, 2009
[31]Kiminori Mizuuchi, Kazuhisa Yamamoto, “Waveguide          second-harmonic generation device with broadened flat   quasi-phase-matching response by use of a grating structure with  located phase shifts,” Opt. Lett., vol. 23, no.24, pp.1880-1882, 1998
[32]Nan Ei Yu, Jung Hoon Ro, and Myoungsik Cha, Sunao Kurimura, Takunori Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett., vol. 27, no. 12, pp. 1046-1048, 2002
[33] M.L. Bortz, M. Fujimura and M.M. Fejer “Increased acceptance bandwidth  for quasi-phase matched second harmonic generation in LiNbO3 waveguides,” Electron. Lett., vol. 30, no.1, pp.34-35, 1994
[34]Amirhossein Tehranchi and Raman Kashyap, “ Design of Novel Unapodized and Apodized Step-Chirped Quasi-Phase Matched Gratings for Broadband Frequency Converters Based on Second-Harmonic Generation ” Joural of Lightwave Technology, vol. 26, no.3, pp. 343-349, 2008
[35] K. Nakamura, H. Ando, and H. Shirnizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett., vol. 50, no. 20, pp. 1413-1414, 1987.
[36] 溫建樹,“寬頻準相位匹配非線性過程應用於綠光與藍光產生之研究,”台灣大學光電工程學研究所碩士論文, 2010][37] 劉俊緯, “摻雜氧化鎂鈮酸鋰準相位匹配大溫度頻寬綠光倍頻雷射晶片研製”,國立台灣大學光電工程學研究所碩士論文,2010年。[38] 林揆倫, “具脊狀波導結構之準相位匹配綠光倍頻晶體研究”,國立台灣大學光電工程學研究所碩士論文,2008年。[39] G. D. Miller,Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance, 1998.
[40] 李俊瑩,“摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製”,國立台灣大學光電工程學研究所碩士論文,2009。[41] 林垠呈,“摻雜氧化鎂鈮酸鋰之帶狀波導綠光倍頻雷射晶片之研製”,國立台灣大學光電工程學研究所碩士論文,2010。[42] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. of the Optical Society of America B, vol. 12, pp. 2102, 1995.