跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/03 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉璟萱
研究生(外文):Ching-Hsuan Liu
論文名稱:利用文字與視覺字的共現關係幫助基於草圖的圖像搜尋
論文名稱(外文):Exploiting Word and Visual Word Co-occurrence for Sketch-based Image Retrieval
指導教授:徐宏民
口試委員:陳祝嵩余能豪葉梅珍
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:15
中文關鍵詞:基於草圖的圖像搜尋共現模型
外文關鍵詞:sketch-based image retrievalco-occurrence model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於觸控式螢幕裝置日趨盛行,利用手繪草圖來檢索圖像已然成為一種趨勢。手繪草圖可以簡單地表達出一些複雜的使用者意圖,如物體的形狀。然而,草圖有時會因為使用者繪畫技巧的差異或不同種類物體形狀的相似而無法明確表達出使用者意圖。儘管添加文字查詢來增加語意資訊可以幫助去除草圖的模糊性,但這需要花費大量的人力和時間為所有資料庫圖片標記文字標籤。我們提出了一個利用文字(words)與視覺字(visual words)的共現(co-occurrence)關係直接針對文字和圖像的關係進行建模的方法,在所有資料庫圖片都沒有文字標籤的情況下,仍然可以加入文字查詢來輔助傳統的基於草圖的圖像搜尋(sketch-based image retrieval)改善其搜尋結果。實驗結果顯示,我們的方法確實可以幫助基於草圖的圖像搜尋得到更相關的搜尋結果,因為它確實從文字與視覺字的共現關係中學習到了其中的語意。

As the increasing popularity of touch-screen devices, retrieving images by hand-drawn sketch has become a trend. Human sketch can easily express some complex user intention such as the object shape. However, sketches are sometimes ambiguous due to different drawing styles and inter-class object shape ambiguity. Although adding text queries as semantic information can help removing the ambiguity of sketch, it requires a huge amount of efforts to annotate text tags to all database images. We propose a method directly model the relationship between text and images by the co-occurrence relationship between words and visual words, which improves traditional sketch-based image retrieval (SBIR), provides a baseline performance and obtains more relevant results in the condition that all images in database do not have any text tag. Experimental results show that our method really can help SBIR to get better retrieval result since it indeed learned semantic meaning from the ``word-visual word" (W-VW) co-occurrence relationship.

口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract v
1 Introduction 1
2 Related Work 3
3 Technical Details 4
3.1 Sketch to Image 4
3.2 Text to Image 5
3.3 Late Fusion 8
4 Experiment Results 9
4.1 Dataset 9
4.2 Evaluation 10
5 Conclusion 13
Bibliography 14

[1] Y. Cao, C. Wang, L. Zhang, and L. Zhang. Edgel index for large-scale sketch-based image search. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 761–768. IEEE, 2011.
[2] Y. Cao, H. Wang, C. Wang, Z. Li, L. Zhang, and L. Zhang. Mindfinder: interactive sketch-based image search on millions of images. In Proceedings of the international conference on Multimedia, pages 1605–1608. ACM, 2010.
[3] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. An evaluation of descriptors for large-scale image retrieval from sketched feature lines. Computers & Graphics, 34(5):482–498, 2010.
[4] M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. Sketch-based image retrieval: Benchmark and bag-of-features descriptors. IEEE Transactions on Visualization and Computer Graphics, 17(11):1624–1636, 2011.
[5] X.-S. Hua, L. Yang, M. Ye, K. Wang, Y. Rui, and J. Li. Clickture: A large-scale real-world image dataset. Technical report, Microsoft Research Technical Report MSR-TR-2013–75, 2013.
[6] S. Parui and A. Mittal. Similarity-invariant sketch-based image retrieval in large databases. In Computer Vision–ECCV 2014, pages 398–414. Springer, 2014.
[7] Z. Sun, C. Wang, L. Zhang, and L. Zhang. Query-adaptive shape topic mining for hand-drawn sketch recognition. In Proceedings of the 20th ACM international conference on Multimedia, pages 519–528. ACM, 2012.
[8] Z. Sun, C. Wang, L. Zhang, and L. Zhang. Sketch2tag: automatic hand-drawn sketch recognition. In Proceedings of the 20th ACM international conference on Multimedia, pages 1255–1256. ACM, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top